Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(11): 2255-2264, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33908535

ABSTRACT

For large-scale analysis of complex protein mixtures, liquid chromatography - tandem mass spectrometry (LC-MS/MS) has been proven to be one of the most versatile tools due to its high sensitivity and ability to both identify and quantify thousands of proteins in a single measurement. Sample preparation typically comprises site-specific cleavage of proteins into peptides, followed by desalting and concomitant peptide enrichment, which is commonly performed by solid phase extraction. Desalting workflows may include multiple liquid handling steps and are thus error prone and labour intensive. To improve the reproducibility of sample preparation for low amounts of protein, we present a centrifugal microfluidic disk that automates all liquid handling steps required for peptide desalting by solid phase extraction (DesaltingDisk). Microfluidic implementation was enabled by a novel centrifugal microfluidic dosing on demand structure that enabled mapping multiple washing steps onto a microfluidic disk. Evaluation of the microfluidic disk was performed by LC-MS/MS analysis of tryptic HEK-293 eukaryotic cell peptide mixtures desalted either using the microfluidic disk or a manual workflow. A comparable number of peptides were identified in the disk and manual set with 19 775 and 20 212 identifications, respectively. For a core set of 10 444 peptides that could be quantified in all injections, intensity coefficients of variation were calculated based on label-free quantitation intensities. The disk set featured smaller variability with a median CV of 9.3% compared to the median CV of 12.6% for the manual approach. Intensity CVs on protein level were lowered from 5.8% to 4.2% when using the LabDisk. Interday reproducibility for both workflows was assessed by LC-SRM/MS analysis of samples that were spiked with 11 synthetic peptides of varying hydrophobicity. Except for the most hydrophilic and hydrophobic peptides, the average CV was lowered to 3.6% for the samples processed with the disk compared to 7.2% for the manual workflow. The presented centrifugal microfluidic DesaltingDisk demonstrates the potential to improve reproducibility in the sample preparation workflow for proteomic mass spectrometry, especially for application with limited amount of sample material.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Automation , Chromatography, Liquid , HEK293 Cells , Humans , Microfluidics , Peptides , Reproducibility of Results
2.
Lab Chip ; 20(16): 2937-2946, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32780041

ABSTRACT

Mass spectrometry has become an important analytical tool for protein research studies to identify, characterise and quantify proteins with unmatched sensitivity in a highly parallel manner. When transferred into clinical routine, the cumbersome and error-prone sample preparation workflows present a major bottleneck. In this work, we demonstrate tryptic digestion of human serum that is fully automated by centrifugal microfluidics. The automated workflow comprises denaturation, digestion and acidification. The input sample volume is 1.3 µl only. A triplicate of human serum was digested with the developed microfluidic chip as well as with a manual reference workflow on three consecutive days to assess the performance of our system. After desalting and liquid chromatography tandem mass spectrometry, a total of 604 proteins were identified in the samples digested with the microfluidic chip and 602 proteins with the reference workflow. Protein quantitation was performed using the Hi3 method, yielding a 7.6% lower median intensity CV for automatically digested samples compared to samples digested with the reference workflow. Additionally, 17% more proteins were quantitated with less than 30% CV in the samples from the microfluidic chip, compared to the manual control samples. This improvement can be attributed to the accurate liquid metering with all volume CVs below 1.5% on the microfluidic chip. The presented automation solution is attractive for laboratories in need of robust automation of sample preparation from small volumes as well as for labs with a low or medium throughput that does not allow for large investments in robotic systems.


Subject(s)
Microfluidics , Proteomics , Automation , Chromatography, Liquid , Digestion , Humans , Mass Spectrometry
3.
Biotechnol Adv ; 41: 107537, 2020.
Article in English | MEDLINE | ID: mdl-32199980

ABSTRACT

Next generation sequencing is in the process of evolving from a technology used for research purposes to one which is applied in clinical diagnostics. Recently introduced high throughput and benchtop instruments offer fully automated sequencing runs at a lower cost per base and faster assay times. In turn, the complex and cumbersome library preparation, starting with isolated nucleic acids and resulting in amplified and barcoded DNA with sequencing adapters, has been identified as a significant bottleneck. Library preparation protocols usually consist of a multistep process and require costly reagents and substantial hands-on-time. Considerable emphasis will need to be placed on standardisation to ensure robustness and reproducibility. This review presents an overview of the current state of automation of library preparation for next generation sequencing. Major challenges associated with library preparation are outlined and different automation strategies are classified according to their functional principle. Pipetting workstations allow high-throughput processing yet offer limited flexibility, whereas microfluidic solutions offer great potential due to miniaturisation and decreased investment costs. For the emerging field of single cell transcriptomics for example, microfluidics enable singularisation of tens of thousands of cells in nanolitre droplets and barcoding of the RNA to assign each nucleic acid sequence to its cell of origin. Finally, two applications, the characterisation of bacterial pathogens and the sequencing within human immunogenetics, are outlined and benefits of automation are discussed.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA , Automation , Gene Library , Humans , Reproducibility of Results
4.
Lab Chip ; 19(22): 3745-3770, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31596297

ABSTRACT

Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switching. In this work, we review and discuss the combination of centrifugal with pneumatic forces which enables transport of even complex liquids in any direction on centrifugal systems, provides actuation for valving and switching, offers alternatives for mixing and enables accurate and precise metering and aliquoting. In addition, pneumatics can be employed for timing to carry out any of the above listed unit operations in a sequential and cascaded manner. Firstly, different methods to generate pneumatic pressures are discussed. Then, unit operations and applications that employ pneumatics are reviewed. Finally, a tutorial section discusses two examples to provide insight into the design process. The first tutorial explains a comparatively simple implementation of a pneumatic siphon valve and provides a workflow to derive optimum design parameters. The second tutorial discusses cascaded pneumatic operations consisting of temperature change rate actuated valving and subsequent pneumatic pumping. In conclusion, combining pneumatic actuation with centrifugal microfluidics allows for the design of robust fluidic networks with simple fluidic structures that are implemented in a monolithic fashion. No coatings are required and the overall demands on manufacturing are comparatively low. We see the combination of centrifugal forces with pneumatic actuation as a key enabling technology to facilitate compact and robust automation of biochemical analysis.

5.
Lab Chip ; 16(10): 1873-85, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27095248

ABSTRACT

Centrifugal microfluidics shows a clear trend towards a higher degree of integration and parallelization. This trend leads to an increase in the number and density of integrated microfluidic unit operations. The fact that all unit operations are processed by the same common spin protocol turns higher integration into higher complexity. To allow for efficient development anyhow, we introduce advanced lumped models for network simulations in centrifugal microfluidics. These models consider the interplay of centrifugal and Euler pressures, viscous dissipation, capillary pressures and pneumatic pressures. The simulations are fast and simple to set up and allow for the precise prediction of flow rates as well as switching and valving events. During development, channel and chamber geometry variations due to manufacturing tolerances can be taken into account as well as pipetting errors, variations of contact angles, compliant chamber walls and temperature variations in the processing device. As an example of considering these parameters during development, we demonstrate simulation based robustness analysis for pneumatic siphon valving in centrifugal microfluidics. Subsequently, the influence of liquid properties on pumping and valving is studied for four liquids relevant for biochemical analysis, namely, water (large surface tension), blood plasma (large contact angle hysteresis), ethanol/water (highly wetting) and glycerine/water (highly viscous). In a second example, we derive a spin protocol to attain a constant flow rate under varying pressure conditions. Both examples show excellent agreement with experimental validations.


Subject(s)
Centrifugation/instrumentation , Lab-On-A-Chip Devices , Models, Theoretical , Computer Simulation
6.
Lab Chip ; 16(1): 199-207, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26610171

ABSTRACT

Portable point-of-care devices for pathogen detection require easy, minimal and user-friendly handling steps and need to have the same diagnostic performance compared to centralized laboratories. In this work we present a fully automated sample-to-answer detection of influenza A H3N2 virus in a centrifugal LabDisk with complete prestorage of reagents. Thus, the initial supply of the sample remains the only manual handling step. The self-contained LabDisk automates by centrifugal microfluidics all necessary process chains for PCR-based pathogen detection: pathogen lysis, magnetic bead based nucleic acid extraction, aliquoting of the eluate into 8 reaction cavities, and real-time reverse transcription polymerase chain reaction (RT-PCR). Prestored reagents comprise air dried specific primers and fluorescence probes, lyophilized RT-PCR mastermix and stick-packaged liquid reagents for nucleic acid extraction. Employing two different release frequencies for the stick-packaged liquid reagents enables on-demand release of highly wetting extraction buffers, such as sequential release of lysis and binding buffer. Microfluidic process-flow was successful in 54 out of 55 tested LabDisks. We demonstrate successful detection of the respiratory pathogen influenza A H3N2 virus in a total of 18 LabDisks with sample concentrations down to 2.39 × 10(4) viral RNA copies per ml, which is in the range of clinical relevance. Furthermore, we detected RNA bacteriophage MS2 acting as internal control in 3 LabDisks with a sample concentration down to 75 plaque forming units (pfu) per ml. All experiments were applied in a 2 kg portable, laptop controlled point-of-care device. The turnaround time of the complete analysis from sample-to-answer was less than 3.5 hours.


Subject(s)
Indicators and Reagents/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Microfluidic Analytical Techniques , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Systems , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/instrumentation
7.
Lab Chip ; 15(15): 3250-8, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26138211

ABSTRACT

The generation of mixtures with precisely metered volumes is essential for reproducible automation of laboratory workflows. Splitting a given liquid into well-defined metered sub-volumes, the so-called aliquoting, has been frequently demonstrated on centrifugal microfluidics. However, so far no solution exists for assays that require simultaneous aliquoting of multiple, different liquids and the subsequent pairwise combination of aliquots with full fluidic separation before combination. Here, we introduce the centrifugo-pneumatic multi-liquid aliquoting designed for parallel aliquoting and pairwise combination of multiple liquids. All pumping and aliquoting steps are based on a combination of centrifugal forces and pneumatic forces. The pneumatic forces are thereby provided intrinsically by centrifugal transport of the assay liquids into dead end chambers to compress the enclosed air. As an example, we demonstrate simultaneous aliquoting of 1.) a common assay reagent into twenty 5 µl aliquots and 2.) five different sample liquids, each into four aliquots of 5 µl. Subsequently, the reagent and sample aliquots are simultaneously transported and combined into twenty collection chambers. All coefficients of variation for metered volumes were between 0.4%-1.0% for intra-run variations and 0.5%-1.2% for inter-run variations. The aliquoting structure is compatible to common assay reagents with a wide range of liquid and material properties, demonstrated here for contact angles between 20° and 60°, densities between 789 and 1855 kg m(-3) and viscosities between 0.89 and 4.1 mPa s. The centrifugo-pneumatic multi-liquid aliquoting is implemented as a passive fluidic structure into a single fluidic layer. Fabrication is compatible to scalable fabrication technologies such as injection molding or thermoforming and does not require any additional fabrication steps such as hydrophilic or hydrophobic coatings or integration of active valves.


Subject(s)
Automation/instrumentation , Centrifugation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Equipment Design , Models, Chemical , Pressure , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...