Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113925, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38460128

ABSTRACT

Salmonella Typhimurium (S.Tm) utilizes the chemotaxis receptor Tsr to exploit gut inflammation. However, the characteristics of this exploitation and the mechanism(s) employed by the pathogen to circumvent antimicrobial effects of inflammation are poorly defined. Here, using different naturally occurring S.Tm strains (SL1344 and 14028) and competitive infection experiments, we demonstrate that type-three secretion system (T3SS)-2 virulence is indispensable for the beneficial effects of Tsr-directed chemotaxis. The removal of the 14028-specific prophage Gifsy3, encoding virulence effectors, results in the loss of the Tsr-mediated fitness advantage in that strain. Surprisingly, without T3SS-2 effector secretion, chemotaxis toward the gut epithelium using Tsr becomes disadvantageous for either strain. Our findings reveal that luminal neutrophils recruited as a result of NLRC4 inflammasome activation locally counteract S.Tm cells exploiting the byproducts of the host immune response. This work highlights a mechanism by which S.Tm exploitation of gut inflammation for colonization relies on the coordinated effects of chemotaxis and T3SS activities.


Subject(s)
Bacterial Proteins , Chemotaxis , Humans , Virulence , Salmonella typhimurium , Inflammation
2.
Cell Host Microbe ; 31(7): 1140-1153.e3, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37348498

ABSTRACT

Antibiotic resistance plasmids can be disseminated between different Enterobacteriaceae in the gut. Here, we investigate how closely related Enterobacteriaceae populations with similar nutrient needs can co-bloom in the same gut and thereby facilitate plasmid transfer. Using different strains of Salmonella Typhimurium (S.Tm SL1344 and ATCC14028) and mouse models of Salmonellosis, we show that the bloom of one strain (i.e., recipient) from very low numbers in a gut pre-occupied by the other strain (i.e., donor) depends on strain-specific utilization of a distinct carbon source, galactitol or arabinose. Galactitol-dependent growth of the recipient S.Tm strain promotes plasmid transfer between non-isogenic strains and between E. coli and S.Tm. In mice stably colonized by a defined microbiota (OligoMM12), galactitol supplementation similarly facilitates co-existence of two S.Tm strains and promotes plasmid transfer. Our work reveals a metabolic strategy used by Enterobacteriaceae to expand in a pre-occupied gut and provides promising therapeutic targets for resistance plasmids spread.


Subject(s)
Escherichia coli , Salmonella Infections , Animals , Mice , Escherichia coli/genetics , Plasmids/genetics , Salmonella typhimurium/genetics , Galactitol , Anti-Bacterial Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...