Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908922

ABSTRACT

RATIONALE AND OBJECTIVES: To assess a deep learning application (DLA) for acute ischemic stroke (AIS) detection on brain magnetic resonance imaging (MRI) in the emergency room (ER) and the effect of T2-weighted imaging (T2WI) on its performance. MATERIALS AND METHODS: We retrospectively analyzed brain MRIs taken through the ER from March to October 2021 that included diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences. MRIs were processed by the DLA, and sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUROC) were evaluated, with three neuroradiologists establishing the gold standard for detection performance. In addition, we examined the impact of axial T2WI, when available, on the accuracy and processing time of DLA. RESULTS: The study included 947 individuals (mean age ± standard deviation, 64 years ± 16; 461 men, 486 women), with 239 (25%) positive for AIS. The overall performance of DLA was as follows: sensitivity, 90%; specificity, 89%; accuracy, 89%; and AUROC, 0.95. The average processing time was 24 s. In the subgroup with T2WI, T2WI did not significantly impact MRI assessments but did result in longer processing times (35 s without T2WI compared to 48 s with T2WI, p < 0.001). CONCLUSION: The DLA successfully identified AIS in the ER setting with an average processing time of 24 s. The absence of performance acquire with axial T2WI suggests that the DLA can diagnose AIS with just axial DWI and FLAIR sequences, potentially shortening the exam duration in the ER.

2.
Sci Rep ; 11(1): 6876, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767226

ABSTRACT

With the rapid growth and increasing use of brain MRI, there is an interest in automated image classification to aid human interpretation and improve workflow. We aimed to train a deep convolutional neural network and assess its performance in identifying abnormal brain MRIs and critical intracranial findings including acute infarction, acute hemorrhage and mass effect. A total of 13,215 clinical brain MRI studies were categorized to training (74%), validation (9%), internal testing (8%) and external testing (8%) datasets. Up to eight contrasts were included from each brain MRI and each image volume was reformatted to common resolution to accommodate for differences between scanners. Following reviewing the radiology reports, three neuroradiologists assigned each study to abnormal vs normal, and identified three critical findings including acute infarction, acute hemorrhage, and mass effect. A deep convolutional neural network was constructed by a combination of localization feature extraction (LFE) modules and global classifiers to identify the presence of 4 variables in brain MRIs including abnormal, acute infarction, acute hemorrhage and mass effect. Training, validation and testing sets were randomly defined on a patient basis. Training was performed on 9845 studies using balanced sampling to address class imbalance. Receiver operating characteristic (ROC) analysis was performed. The ROC analysis of our models for 1050 studies within our internal test data showed AUC/sensitivity/specificity of 0.91/83%/86% for normal versus abnormal brain MRI, 0.95/92%/88% for acute infarction, 0.90/89%/81% for acute hemorrhage, and 0.93/93%/85% for mass effect. For 1072 studies within our external test data, it showed AUC/sensitivity/specificity of 0.88/80%/80% for normal versus abnormal brain MRI, 0.97/90%/97% for acute infarction, 0.83/72%/88% for acute hemorrhage, and 0.87/79%/81% for mass effect. Our proposed deep convolutional network can accurately identify abnormal and critical intracranial findings on individual brain MRIs, while addressing the fact that some MR contrasts might not be available in individual studies.


Subject(s)
Brain/anatomy & histology , Deep Learning , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Multiparametric Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Humans , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...