Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JID Innov ; 3(6): 100227, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37886699

ABSTRACT

Sunscreens have been shown to protect against UVR-induced DNA damage in human skin under laboratory conditions. We presently extended these observations to real-life conditions in volunteers after their ordinary exposure habits during summer holidays. Volunteers were randomly assigned to a control group and an educated group supplied with a SPF ≥50 sunscreen and receiving instructions for use. A questionnaire was used to determine the extent of exposure. No difference in average solar UVR exposure was found between the two groups. DNA photoprotection was first assessed by, to our knowledge, a previously unreported noninvasive assay on the basis of the quantification of pyrimidine dimers released by DNA repair in urine. Damage was also quantified in the nuclear DNA extracted from the roof of suction blisters collected after recreational exposure. The urinary concentration of photoproducts was significantly higher in the control than in the educated group. The same trend was observed for the level of photoproducts in the DNA from suction blisters. The unambiguous observation of an efficient photoprotection against DNA damage afforded by sunscreen under real-life conditions provides strong support for the efficiency of the sunscreens. In addition, the results validate the use of urinary DNA photoproducts as a noninvasive assay applicable to photoprotection.

2.
Anal Biochem ; 401(1): 74-80, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20175983

ABSTRACT

G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the beta1 and beta2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.


Subject(s)
Escherichia coli/metabolism , Receptor, Cannabinoid, CB1/chemistry , Receptor, Parathyroid Hormone, Type 1/chemistry , Animals , Cyclodextrins/chemistry , Humans , Inclusion Bodies/metabolism , Mice , Protein Binding , Protein Folding , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Anal Biochem ; 386(2): 147-55, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19150325

ABSTRACT

G-protein-coupled receptors (GPCRs) represent approximately 3% of human proteome and the most prominent class of pharmacological targets. Despite their important role in many functions, only the X-ray structures of rhodopsin, and more recently of the beta(1)- and beta(2)-adrenergic receptors, have been resolved. Structural studies of GPCRs require that several tedious preliminary steps be fulfilled before setting up the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. Here we report on screening expression conditions of approximately 100 GPCRs in Escherichia coli with a view to obtain large amounts of inclusion bodies, a prerequisite to the subsequent refolding step. A set of optimal conditions, including appropriate vectors (Gateway pDEST17oi), strain (C43), and fermentation at high optical density, define the best first instance choice. Beyond this minimal setting, however, the rate of success increases significantly with the number of conditions tested. In contrast with experiments based on a single GPCR expression, our approach provides statistically significant results and indicates that up to 40% of GPCRs can be expressed as inclusion bodies in quantities sufficient for subsequent refolding, solubilization, and purification.


Subject(s)
Escherichia coli/genetics , Inclusion Bodies/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cloning, Molecular , Escherichia coli/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Mammals , Protein Engineering/methods , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/isolation & purification
4.
J Bacteriol ; 188(7): 2400-10, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16547026

ABSTRACT

Phage p2, a member of the lactococcal 936 phage species, infects Lactococcus lactis strains by binding initially to specific carbohydrate receptors using its receptor-binding protein (RBP). The structures of p2 RBP, a homotrimeric protein composed of three domains, and of its complex with a neutralizing llama VH domain (VHH5) have been determined (S. Spinelli, A. Desmyter, C. T. Verrips, H. J. de Haard, S. Moineau, and C. Cambillau, Nat. Struct. Mol. Biol. 13:85-89, 2006). Here, we show that VHH5 was able to neutralize 12 of 50 lactococcal phages belonging to the 936 species. Moreover, escape phage mutants no longer neutralized by VHH5 were isolated from 11 of these phages. All of the mutations (but one) cluster in the RBP/VHH5 interaction surface that delineates the receptor-binding area. A glycerol molecule, observed in the 1.7-A resolution structure of RBP, was found to bind tightly (Kd= 0.26 microM) in a crevice located in this area. Other saccharides bind RBP with comparable high affinity. These data prove the saccharidic nature of the bacterial receptor recognized by phage p2 and identify the position of its binding site in the RBP head domain.


Subject(s)
Bacteriophage P2/metabolism , Carbohydrates , Lactococcus lactis/virology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Animals , Bacteriophage P2/chemistry , Bacteriophage P2/genetics , Binding Sites , Camelids, New World , Models, Molecular , Mutation , Neutralization Tests , Phylogeny , Protein Binding , Protein Conformation , Receptors, Cell Surface/genetics , Viral Proteins/genetics
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 2109-15, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12454472

ABSTRACT

The first results of a medium-scale structural genomics program clearly demonstrate the value of using a medium-throughput crystallization approach based on a two-step procedure: a large screening step employing robotics, followed by manual or automated optimization of the crystallization conditions. The structural genomics program was based on cloning in the Gateway vectors pDEST17, introducing a long 21-residue tail at the N-terminus. So far, this tail has not appeared to hamper crystallization. In ten months, 25 proteins were subjected to crystallization; 13 yielded crystals, of which ten led to usable data sets and five to structures. Furthermore, the results using a robot dispensing 50-200 nl drops indicate that smaller protein samples can be used for crystallization. These still partial results might indicate present and future directions for those who have to make crucial choices concerning their crystallization platform in structural genomics programs.


Subject(s)
Crystallization/methods , Crystallization/instrumentation , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Light , Robotics , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...