Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6558, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848414

ABSTRACT

The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-ß-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Intermediate Filaments , Mutation , Glycosylation , Acetylglucosamine , Protein Processing, Post-Translational
2.
bioRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865196

ABSTRACT

The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-ß-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. Interestingly, NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc is a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons, underlining its functional significance. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, indicating a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.

3.
Glycobiology ; 31(9): 1102-1120, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34142147

ABSTRACT

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.


Subject(s)
Acetylglucosamine , Endoplasmic Reticulum , Acetylglucosamine/metabolism , Animals , Endoplasmic Reticulum/metabolism , Glycosylation , Mammals/metabolism , N-Acetylglucosaminyltransferases/metabolism , Nutrients , Protein Processing, Post-Translational , Signal Transduction
4.
JCI Insight ; 5(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31944090

ABSTRACT

Gigaxonin (also known as KLHL16) is an E3 ligase adaptor protein that promotes the ubiquitination and degradation of intermediate filament (IF) proteins. Mutations in human gigaxonin cause the fatal neurodegenerative disease giant axonal neuropathy (GAN), in which IF proteins accumulate and aggregate in axons throughout the nervous system, impairing neuronal function and viability. Despite this pathophysiological significance, the upstream regulation and downstream effects of normal and aberrant gigaxonin function remain incompletely understood. Here, we report that gigaxonin is modified by O-linked ß-N-acetylglucosamine (O-GlcNAc), a prevalent form of intracellular glycosylation, in a nutrient- and growth factor­dependent manner. MS analyses of human gigaxonin revealed 9 candidate sites of O-GlcNAcylation, 2 of which ­ serine 272 and threonine 277 ­ are required for its ability to mediate IF turnover in gigaxonin-deficient human cell models that we created. Taken together, the results suggest that nutrient-responsive gigaxonin O-GlcNAcylation forms a regulatory link between metabolism and IF proteostasis. Our work may have significant implications for understanding the nongenetic modifiers of GAN phenotypes and for the optimization of gene therapy for this disease.


Subject(s)
Acetylglucosamine/metabolism , Cytoskeletal Proteins/metabolism , Giant Axonal Neuropathy/metabolism , Intermediate Filament Proteins/metabolism , Antigens, Neoplasm/metabolism , Binding Sites , Cell Line , Cytoskeletal Proteins/genetics , Epigenesis, Genetic , Genetic Therapy , Giant Axonal Neuropathy/etiology , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/therapy , Glycosylation , Histone Acetyltransferases/metabolism , Humans , Hyaluronoglucosaminidase/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Models, Biological , Nutritional Status , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteostasis , Serine/metabolism , Threonine/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Nat Commun ; 10(1): 1864, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015551

ABSTRACT

Proteins smaller than about 50 kDa are currently too small to be imaged at high resolution by cryo-electron microscopy (cryo-EM), leaving most protein molecules in the cell beyond the reach of this powerful structural technique. Here we use a designed protein scaffold to bind and symmetrically display 12 copies of a small 26 kDa protein, green fluorescent protein (GFP). We show that the bound cargo protein is held rigidly enough to visualize it at a resolution of 3.8 Å by cryo-EM, where specific structural features of the protein are visible. The designed scaffold is modular and can be modified through modest changes in its amino acid sequence to bind and display diverse proteins for imaging, thus providing a general method to break through the lower size limitation in cryo-EM.


Subject(s)
Cryoelectron Microscopy/methods , Green Fluorescent Proteins/ultrastructure , Molecular Imaging/methods , Amino Acid Sequence/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Models, Molecular , Molecular Weight , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...