Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(11): 105332, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827288

ABSTRACT

We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.


Subject(s)
Bacterial Proteins , Cytochromes c , Helicobacter hepaticus , Heme , Biological Transport , Cytochromes c/metabolism , Heme/metabolism , Membrane Proteins/metabolism , Bacterial Proteins/metabolism
2.
J Vasc Surg Cases Innov Tech ; 7(4): 718-724, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34754996

ABSTRACT

Despite recent advancements in endovascular technology and the proven durability of open surgery, extensive thoracoabdominal aortoiliac occlusive disease (AIOD) remains challenging to treat. In the present report, we have described the case of a 58-year-old woman with AIOD and multiple medical comorbidities. She successfully underwent a novel intraoperative transesophageal echocardiography-guided combined treatment with concurrent descending thoracic aorta to bilateral femoral artery bypass and thoracic endovascular aortic repair. We have shown that this approach, which combines descending thoracic aorta to bilateral femoral artery bypass with thoracic endovascular aortic repair, is an effective treatment alternative for future cases of complex AIOD.

3.
Molecules ; 24(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083395

ABSTRACT

The United States is currently experiencing an opioid crisis, with more than 47,000 deaths in 2017 due to opioid overdoses. Current approaches for opioid identification and quantification in body fluids include immunoassays and chromatographic methods (e.g., LC-MS, GC-MS), which require expensive instrumentation and extensive sample preparation. Our aim was to develop a portable point-of-care device that can be used for the instant detection of opioids in body fluids. Here, we reported the development of a morphine-sensitive fluorescence-based sensor chip to sensitively detect morphine in the blood using a homogeneous immunoassay without any washing steps. Morphine-sensitive illuminating peptides were identified using a high throughput one-bead one-compound (OBOC) combinatorial peptide library approach. The OBOC libraries contain a large number of random peptides with a molecular rotor dye, malachite green (MG), that are coupled to the amino group on the side chain of lysine at different positions of the peptides. The OBOC libraries were then screened for fluorescent activation under a confocal microscope, using an anti-morphine monoclonal antibody as the screening probe, in the presence and absence of free morphine. Using this novel three-step fluorescent screening assay, we were able to identify the peptide-beads that fluoresce in the presence of an anti-morphine antibody, but lost fluorescence when the free morphine was present. After the positive beads were decoded using automatic Edman microsequencing, the morphine-sensitive illuminating peptides were then synthesized in soluble form, functionalized with an azido group, and immobilized onto microfabricated PEG-array spots on a glass slide. The sensor chip was then evaluated for the detection of morphine in plasma. We demonstrated that this proof-of-concept platform can be used to develop fluorescence-based sensors against morphine. More importantly, this technology can also be applied to the discovery of other novel illuminating peptidic sensors for the detection of illicit drugs and cancer biomarkers in body fluids.


Subject(s)
Analgesics, Opioid/analysis , Analgesics, Opioid/blood , Body Fluids/chemistry , Combinatorial Chemistry Techniques/methods , Morphine/analysis , Morphine/blood , Peptides/chemistry , Chromatography, Liquid , High-Throughput Screening Assays , Humans , Peptide Library
4.
Sci Rep ; 8(1): 11146, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042424

ABSTRACT

Warming is a major climate change concern, but the impact of high maximum temperatures depends upon the air's moisture content. Trends in maximum summertime temperature, moisture, and heat index are tracked over three time periods: 1900-2011, 1950-2011, and 1979-2011; these trends differ notably from annual temperature trends. Trends are emphasized from two CRU datasets (CRUTS3.25 and CRUTS4.01) and two reanalyses (ERA-20C and 20CRv2). Maximum temperature trends tend towards warming that is stronger over the Great Lakes, the interior western and the northeastern contiguous United States. A warming hole in the Midwest generally decreases in size and magnitude when heat stress trends are calculated because the region has increasing moisture. CRU and nearly all reanalyses find cooling in the northern high plains that is not found in NOAA Climate Division trends. These NOAA trends are captured better by CRUTS401. Moistening in the northeast amplifies the heat stress there. Elsewhere the moisture trends are less clear. Drying over northern Texas (after 1996) in CRUTS401 translates into decreasing heat stress there (less so in CRUTS325). Though other reanalyses are not intended for long-term trends, MERRA-2 and ERA-Interim match observed trends better than other reanalyses.

5.
J Neurotrauma ; 35(1): 149-156, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28665166

ABSTRACT

Epidemiology studies have found that a comorbidity exists between traumatic brain injury (TBI) and stress-related disorders. However, the anatomical and cellular bases for this association is poorly understood. An inability to extinguish the memory of a traumatic event lies at the core of many stress-related disorders. Experimental studies have shown that the medial pre-frontal cortex (mPFC), especially the infralimbic (IL) cortex, is required for extinction and for storing the memory of extinction. The output from the central nucleus of amygdala projects to the lateral hypothalamus, paraventricular nucleus, and central gray to regulate heart rate, stress hormone release, and freezing behavior, respectively. Projection neurons of the IL (layers II/III pyramidal neurons) are thought to stimulate GABAergic neurons in the amygdala, which, in turn, inhibit central amygdala output and reduce fear expression. Thus, loss and/or altered morphology of projection neurons of IL as a result of a mild TBI (mTBI) can compromise their ability to effectively inhibit the central amygdala, allowing the original fear memory to drive behavior. Using lateral mild fluid percussion injury (mFPI) in rats, we found that mFPI did not reduce neuronal numbers in the IL, but caused a significant reduction in overall dendritic spine density of both basal and apical dendrites on layer II/III pyramidal neurons. Spine numbers on layer V/VI pyramidal neurons were not significantly changed as a result of mFPI. The reduction in spine density on layer II/III pyramidal neurons we observed may diminish the efficacy of these neurons to inhibit the output of the central amygdala, thereby reducing the ability of the IL to suppress fear responses after extinction training. Consistent with this, mFPI rats display enhanced freezing behavior during and after extinction training as compared to sham-operated controls, although the ability to form contextual fear memories was not impaired. These results may have implications in stress-related disorders associated with mTBI.


Subject(s)
Brain Concussion/pathology , Dendritic Spines/pathology , Extinction, Psychological/physiology , Prefrontal Cortex/pathology , Pyramidal Cells/pathology , Animals , Brain Concussion/physiopathology , Brain Concussion/psychology , Fear/physiology , Fear/psychology , Male , Memory/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...