Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biochem Biophys Res Commun ; 411(2): 335-41, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21726532

ABSTRACT

Protein kinase D (PKD) regulates cardiac myocyte growth and contractility through phosphorylation of proteins such as class IIa histone deacetylases (HDACs) and troponin I (TnI). In response to agonists that activate G-protein-coupled receptors (GPCRs), PKD is phosphorylated by protein kinase C (PKC) on two serine residues (Ser-738 and Ser-742 in human PKD1) within an activation loop of the catalytic domain, resulting in stimulation of PKD activity. Here, we identify a novel PKC target site located adjacent to the auto-inhibitory pleckstrin homology (PH) domain in PKD. This site (Ser-412 in human PKD1) is conserved in each of the three PKD family members and is efficiently phosphorylated by multiple PKC isozymes in vitro. Employing a novel anti-phospho-Ser-412-specific antibody, we demonstrate that this site in PKD is rapidly phosphorylated in primary cardiac myocytes exposed to hypertrophic agonists, including norepinephrine (NE) and endothelin-1 (ET-1). Differential sensitivity of this event to pharmacological inhibitors of PKC, and data from in vitro enzymatic assays, suggest a predominant role for PKCδ in the control of PKD Ser-412 phosphorylation. Together, these data suggest a novel, signal-dependent mechanism for controlling PKD function in cardiac myocytes.


Subject(s)
Cardiomegaly/enzymology , Protein Kinase C/metabolism , Amino Acid Sequence , Endothelin-1/pharmacology , HEK293 Cells , Humans , Molecular Sequence Data , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Norepinephrine/pharmacology , Phosphorylation , Protein Kinase C/genetics
2.
J Biomol Screen ; 16(7): 724-33, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21521800

ABSTRACT

Transforming growth factor ß (TGF-ß) type I receptor (activin receptor-like kinase 5, ALK5) has been identified as a promising target for fibrotic diseases. To find a novel inhibitor of ALK5, the authors performed a high-throughput screen of a library of 420,000 compounds using dephosphorylated ALK5. From primary hits of 1521 compounds, 555 compounds were confirmed. In total, 124 compounds were then selected for follow-up based on their unique structures and other properties. Repeated concentration-response testing and final interference assays of the above compounds resulted in the discovery of a structurally novel ALK5 inhibitor (compound 8) (N-(thiophen 2-ylmethyl)-3-(3,4,5 trimethoxyphenyl)imidazo[1,2ß]pyridazin 6-amine) with a low IC(50) value of 0.7 µM. Compound 8 also inhibited the TGF-ß-induced nuclear translocation of SMAD with an EC(50) value of 0.8 µM. Kinetic analysis revealed that compound 8 inhibited ALK5 via mixed-type inhibition, suggesting that it may bind to ALK5 differently than other published adenosine triphosphate site inhibitors.


Subject(s)
High-Throughput Screening Assays , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Adenosine Diphosphate/metabolism , Cell Line, Tumor , Computer Simulation , Fluorescence Resonance Energy Transfer , Fluoroimmunoassay , Humans , Kinetics , Molecular Conformation , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Small Molecule Libraries/pharmacology , Transforming Growth Factor beta/pharmacology
3.
Arch Biochem Biophys ; 506(2): 173-80, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21146494

ABSTRACT

Signaling via pro-growth G protein coupled receptors triggers phosphorylation of HDAC5 on two serine residues (Ser259 and Ser498), resulting in nuclear export of HDAC5 and de-repression of downstream target genes. In the previous paper we reported the important role of PKD isozymes in the regulation of HDAC5 by phosphorylating Ser498 of HDAC5 [Q.K. Huynh, T.A. Mckinsey, Arch. Biochem. Biophys. 450 (2006) 141-148]. In the present paper, we provide evidence that PKCδ can directly phosphorylate Ser259 of HDAC5. The evidence is based on the following facts (a) isolated kinase fraction from human failing heart tissues contained PKCδ that phosphorylated HDAC5 Ser259 peptide and no significant activity was found for the unbound fraction after they were immunoprecipitated with PKCδ specific antibody; (b) specific inhibitors for PKCδ inhibited kinase activity from isolated fraction and recombinant human PKCδ with similar IC50 values; (c) recombinant human PKCδ can directly phosphorylate full length Ser259 HDAC5 protein and HDAC5 Ser259 peptide. The results suggest that in addition to activation of protein kinase D isozymes by phosphorylating Ser744 and Ser748 at their activation sites, PKCδ may also play a role in the regulation of HDAC5 by phosphorylation of Ser259.


Subject(s)
Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Protein Kinase C-delta/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Heart Failure/enzymology , Histone Deacetylases/genetics , Histone Deacetylases/isolation & purification , Humans , In Vitro Techniques , Kinetics , Molecular Sequence Data , Myocardium/enzymology , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Serine/chemistry , Signal Transduction
4.
Arch Biochem Biophys ; 506(2): 130-6, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21081101

ABSTRACT

Many of the cellular responses to Ca++ signaling are modulated by a family of multifunctional Ca++/calmodulin dependent protein kinases (CaMKs): CaMK I, CaMK II and CaMK IV. In order to further understand the role of CaMKs, we investigated the kinetic mechanism of CaMK II isozymes in comparison with those of CaMK I and CaMK IV by analyzing their steady state kinetics using phospholamban as a phosphoacceptor. The results indicated that (a) the CaMK family's reaction mechanisms were of the sequential type in which all substrates must bind to enzyme before any product is released; (b) CaMK I and CaMK IV exhibited random sequential mechanism where either phospholamban or ATP can bind to the free enzyme; (c) the data of product inhibition for CaMK IIs best fit with an Ordered Bi Bi mechanism in which phospholamban is the first substrate to bind and ADP is the last product to be released; and (d) the constant α (ratio of apparent dissociation constants for binding peptide in the presence and absence of the second ligand) of all isozymes for ATP and peptide was higher than 1 indicating that the binding of phospholamban to CaMK decreased the enzyme's affinity toward ATP.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/chemistry , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 1/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 1/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 4/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 4/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Humans , In Vitro Techniques , Kinetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
5.
Arch Biochem Biophys ; 450(2): 141-8, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16584705

ABSTRACT

Class II histone deacetylases (HDACs) are signal-responsive repressors of gene transcription. In the heart, class II HDAC5 suppresses expression of genes that govern stress-induced cardiomyocyte growth. Signaling via pro-growth G protein coupled receptors triggers phosphorylation of HDAC5 on two serine residues (Ser(259) and Ser(498)), resulting in nuclear export of HDAC5 and de-repression downstream target genes. Although prior studies established a role for protein kinase D (PKD) in the regulation of HDAC5 phosphorylation, it remained unclear whether PKD functions directly or indirectly to control the phosphorylation status of this transcriptional repressor. Here, we demonstrate that PKD catalyzes direct phosphoryl-group transfer to Ser(498) of HDAC5. Each of the three PKD family members, PKD1, PKD2, and PKD3, is capable of phosphorylating HDAC5 (K(m) for substrate=2.07, 3.12, and 1.43microM, respectively), although PKD2 exhibits highest catalytic efficiency (k(cat)/K(m)=6.77min(-1)microM(-1)). Kinetic studies revealed that the three PKD isozymes phosphorylate HDAC5 through a random sequential mechanism, and that ATP has no effect on association of kinase with peptide substrate. In addition, we demonstrate that ADP competitively inhibits phosphorylation of HDAC5 (K(i)=8.50, 17.54, and 11.98microM for PKD1, PKD2, and PKD3, respectively). These findings define PKD as an HDAC kinase and thus suggest key roles for PKD family members in the control of chromatin structure and gene expression.


Subject(s)
Histone Deacetylases/chemistry , Protein Kinase C/chemistry , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Animals , Enzyme Activation , Humans , Isoenzymes/chemistry , Kinetics , Peptides/chemistry , Phosphorylation , Serine/chemistry , Signal Transduction , Substrate Specificity
6.
J Biol Chem ; 277(16): 13840-7, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11839743

ABSTRACT

NF-kappaB is sequestered in the cytoplasm by the inhibitory IkappaB proteins. Stimulation of cells by agonists leads to the rapid phosphorylation of IkappaBs leading to their degradation that results in NF-kappaB activation. IKK-1 and IKK-2 are two direct IkappaB kinases. Two recently identified novel IKKs are IKK-i and TBK-1. We have cloned, expressed, and purified to homogeneity recombinant human (rh)IKK-i and rhTBK-1 and compared their enzymatic properties with those of rhIKK-2. We show that rhIKK-i and rhTBK-1 are enzymatically similar to each other. We demonstrate by phosphopeptide mapping and site-specific mutagenesis that rhIKK-i and rhTBK-1 are phosphorylated on serine 172 in the mitogen-activated protein kinase kinase activation loop and that this phosphorylation is necessary for kinase activity. Also, rhIKK-i and rhTBK-1 have differential peptide substrate specificities compared with rhIKK-2, the mitogen-activated protein kinase kinase activation loop of IKK-2 being a more favorable substrate than the IkappaBalpha peptide. Finally, using analogs of ATP, we demonstrate unique differences in the ATP-binding sites of rhIKK-i, rhTBK-1, and rhIKK-2. Thus, although these IKKs are structurally similar, their enzymatic properties may provide insights into their unique functions.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Blotting, Western , Cell Line , Cloning, Molecular , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Humans , I-kappa B Kinase , Inhibitory Concentration 50 , Insecta , Jurkat Cells , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , NF-kappa B/metabolism , Peptides/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Isoforms , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Serine/metabolism
7.
J Biol Chem ; 277(15): 12550-8, 2002 Apr 12.
Article in English | MEDLINE | ID: mdl-11815618

ABSTRACT

Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.


Subject(s)
Isoenzymes/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Cell Line , Cloning, Molecular , DNA, Complementary , Dimerization , Humans , I-kappa B Kinase , Kinetics , Molecular Sequence Data , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...