Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(51): 17819-17826, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36512513

ABSTRACT

Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.


Subject(s)
Dengue Virus , Dengue , Metal Nanoparticles , Animals , Humans , Serogroup , Gold , Viral Nonstructural Proteins , Immunoassay/methods , Antibodies, Viral , Dengue/diagnosis , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay/methods
2.
Dement Geriatr Cogn Dis Extra ; 12(1): 34-42, 2022.
Article in English | MEDLINE | ID: mdl-35611147

ABSTRACT

Background: In Vietnam, there has been, currently, no standardized tool for depression assessment for people with dementia (PWD). Cornell Scale for Depression in Dementia (CSDD) is a widely studied and used scale for PWD worldwide. Objectives: The aim of this study was to standardize the Vietnamese version of the CSDD (V-CSDD) in depression assessment in PWD through reliability and validity examination. Methods: V-CSDD was rated in terms of reliability and validity with gold standard regarding "major depressive episode" and "major depressive-like episode" of DSM-5. Cronbach's α, ICC, exploratory factor analysis (EFA), and receiver operating characteristic analysis were performed. Results: V-CSDD was found to have a high internal consistency reliability (Cronbach's α = 0.80), inter-rater reliability at sound ranking (ICC = 0.89; 95% CI = 0.81-0.94), maximum cut-off mark of 13 (sensitivity = 70%, specificity = 92%), and EFA, which suggested that V-CSDD may comprise 5 factors. Conclusions: Results indicate the V-CSDD to be a reliable and valid assessment and to be beneficial in classifying and diagnosing depression in dementia outpatients in clinical contexts.

3.
Sci Total Environ ; 800: 149410, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34391150

ABSTRACT

Oxygen vacancy as a typical point defect has incited substantial interest in photocatalysis due to its profound impact on optical absorption response and facile isolation of photocarriers. The presence of oxygen vacancy can introduce the midgap defect states, which promote extended absorption in the visible region. The redistribution of electron density at the surface can stimulate the adsorption and activation kinetics of adsorbates, manifesting optimal photocatalytic performance. Despite such alluring outcomes, the ambiguity in understanding the precise location, appropriate concentration, and oxygen vacancy role is still a long-standing task. The present review article comprehensively outlines the identification of oxygen vacancy defects at bulk or on the surface and its ultimate effect on the photocatalytic degradation of phenolic compounds. Particular emphasis has been drawn to summarize the critical influence of oxygen vacancy on different factors such as crystal structure, bandgap energy, electronic structure, and charge carrier mobility by integrating experimental results and theoretical calculations. We have also explored the reaction pathways and the intermediate chemistry of phenol photodegradation by analyzing the molecular activation (O2, H2O, and sulphate activation) through oxygen vacancy defects. Finally, the review concludes with the various challenges and future perspectives, aiming to provide a firm base for further progressions towards photocatalysis.


Subject(s)
Nanostructures , Oxygen , Phenols , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...