Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 664: 667-680, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38490041

ABSTRACT

This paper presents an eco-design approach to the synthesis of a highly efficient Cr(VI) adsorbent, utilizing a positively charged surface mesoporous FDU-12 material (designated as MI-Cl-FDU-12) for the first time. The MI-Cl-FDU-12 anion-exchange adsorbent was synthesized via a facile one-pot synthesis approach using sodium silicate extracted from sorghum waste as a green silica source, 1-methyl-3-(triethoxysilylpropyl) imidazolium chloride as a functionalization agent, triblock copolymer F127 as a templating or pore-directing agent, trimethyl benzene as a swelling agent, KCl as an additive, and water as a solvent. The synthesis method offers a sustainable and environmentally friendly approach to the production of a so-called "green" adsorbent with a bimodal micro-/mesoporous structure and a high surface area comparable with the previous reports regarding FDU-12 synthesis. MI-Cl-FDU-12 was applied as an anion exchanger for the adsorption of toxic Cr(VI) oxyanions from aqueous media and various kinetic and isotherm models were fitted to experimental data to propose the adsorption behavior of Cr(VI) on the adsorbent. Langmuir model revealed the best fit to the experimental data at four different temperatures, indicating a homogeneous surface site affinity. The theoretical maximum adsorption capacities of the adsorbent were found to be 363.5, 385.5, 409.0, and 416.9 mg g-1 at 298, 303, 308, and 313 K, respectively; at optimal conditions (pH=2, adsorbent dose=3.0 mg, and contact time of 30 min), surpassing that of most previously reported Cr(VI) adsorbents in the literature. A regeneration study revealed that this adsorbent possesses outstanding performance even after six consecutive recycling.

2.
Antioxid Redox Signal ; 37(4-6): 257-273, 2022 08.
Article in English | MEDLINE | ID: mdl-35343238

ABSTRACT

Aims: Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) plays an important role in the ubiquitin-proteasome system and is distributed mostly in the brain. Previous studies have shown that mutated forms or reduction of UCH-L1 are related to neurodegenerative disorders, but the mechanisms of pathogenesis are still not well understood. To study its roles in motor neuronal health, we utilized the Drosophila model in which dUCH, a homolog of human UCH-L1, was specifically knocked down in motor neurons. Results: The reduction of Drosophila ubiquitin carboxyl-terminal hydrolase (dUCH) in motor neurons induced excessive reactive oxygen species production and multiple aging-like phenotypes, including locomotive defects, muscle degeneration, enhanced apoptosis, and shortened longevity. In addition, there is a decrease in the density of the synaptic active zone and glutamate receptor area at the neuromuscular junction. Interestingly, all these defects were rescued by vitamin C treatment, suggesting a close association with oxidative stress. Strikingly, the knockdown of dUCH at motor neurons exhibited aberrant morphology and function of mitochondria, such as mitochondrial DNA (mtDNA) depletion, an increase in mitochondrial size, and overexpression of antioxidant enzymes. Innovation: This research indicates a new, possible pathogenesis of dUCH deficiency in the ventral nerve cord and peripheral nervous systems, which starts with abnormal mitochondria, leading to oxidative stress and accumulation aging-like defects in general. Conclusion: Taken together, by using the Drosophila model, our findings strongly emphasize how the UCH-L1 shortage affects motor neurons and further demonstrate the crucial roles of UCH-L1 in neuronal health. Antioxid. Redox Signal. 37, 257-273.


Subject(s)
Drosophila Proteins , Drosophila , Motor Neurons , Ubiquitin Thiolesterase , Animals , Drosophila Proteins/genetics , Humans , Proteasome Endopeptidase Complex , Ubiquitin , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...