Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 152: 69-79, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994899

ABSTRACT

Most plastics are today mechanically recycled (MR), whereas chemical recycling (CR) is an emerging technology. Substitutability of virgin material is vital for their environmental performance assessed through life cycle assessment (LCA). MR faces the reduction in the material's technical quality but also the potential market because legal safety requirements currently eliminate applications such as food packaging. This study presents a data-driven method for quantifying the overall substitutability (OS), composed of technical (TS) and market substitutability (MS). First, this is illustrated for six non-food contact material (non-FCM) applications and three hypothetical future FCM applications from mechanical recyclates, using mechanical property and market data. Then, OS results are used in a comparative LCA of MR and thermochemical recycling (TCR) of several plastic waste fractions in Belgium. For mechanical recyclates, TS results for the studied non-FCM and FCM applications were comparable, but OS results varied between 0.35 and 0.79 for non-FCM applications and between 0.78 and 1 for FCM applications, reflecting the lower MS results for the current situation. Out of nine application scenarios, MR obtained a worse resource consumption and terrestrial acidification impact than CR in six scenarios. MR maintained the lowest global warming impact for all scenarios. This study contributes to an improved understanding of the environmental benefits of MR and TCR. Inclusion of other criteria (e.g. processability, colour, odour) in the quantification of the overall substitutability for MR products should be further investigated, as well as the environmental performance of TCR at industrial scale.


Subject(s)
Plastics , Waste Management , Belgium , Food Packaging , Product Packaging , Receptors, Antigen, T-Cell , Recycling/methods
2.
Waste Manag ; 114: 331-340, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32688065

ABSTRACT

Life Cycle Assessment (LCA) is a widespread tool used to guide decision-makers towards optimal strategic choices for sustainable growth. A key aspect of LCA studies of waste management systems where recycling activities are present is to account for resource recovery and the related substitution effects. Although multiple scientific papers assume a 1:1 substitution ratio between similar materials/products, this is often incorrect as the actual ratio is likely to vary. The focus of this paper is on the calculation of the substitutability coefficient for secondary materials based on technical characteristics. A state of the art literature review showed that many different calculation procedures were applied, which led to a wide variety of substitutability coefficients (sometimes provided under different terminology). In this perspective, the objective of this paper is to provide guidelines on the procedure to be followed to calculate the substitutability coefficient for secondary materials, based on technical characteristics. These guidelines are then applied to two waste management case studies, one dealing with bottom ashes from incineration and the other with plastic waste. In total, sixteen technical substitutability coefficients are given for ten secondary materials, based on state of the art and presented case studies. The paper thus represents a step forward in quantifying the substitutability of secondary materials in waste management LCA studies. The guidelines presented may allow other case studies to enrich the list of coefficients, useful for all LCA practitioners in a harmonized way allowing a more correct evaluation of the environmental impacts associated with recycling activities.


Subject(s)
Refuse Disposal , Waste Management , Environment , Incineration , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...