Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 20(7): e13416, 2021 07.
Article in English | MEDLINE | ID: mdl-34117818

ABSTRACT

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aß peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aß plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.


Subject(s)
Alzheimer Disease/genetics , NFATC Transcription Factors/antagonists & inhibitors , Plaque, Amyloid/physiopathology , Animals , Disease Models, Animal , Mice
2.
Neuroscience ; 459: 85-103, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33524494

ABSTRACT

The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.


Subject(s)
Depressive Disorder, Major , Helplessness, Learned , Animals , Disease Models, Animal , Female , Fluoxetine/pharmacology , Hippocampus , Rats , Rats, Sprague-Dawley
3.
Molecules ; 24(23)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771153

ABSTRACT

Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer's disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.


Subject(s)
Hydroxyquinolines/chemical synthesis , Hydroxyquinolines/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Oxyquinoline/analogs & derivatives , Cell Line, Tumor , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Hydroxyquinolines/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Protein Stability/drug effects , Quinidine/chemistry , Quinine/chemistry , Stereoisomerism
4.
Molecules ; 23(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072653

ABSTRACT

The 8-hydroxyquinoline pharmacophore scaffold has been shown to possess a range of activities as metal chelation, enzyme inhibition, cytotoxicity, and cytoprotection. Based on our previous findings we set out to optimize the scaffold for cytoprotective activity for its potential application in central nervous system related diseases. A 48-membered Betti-library was constructed by the utilization of formic acid mediated industrial-compatible coupling with sets of aromatic primary amines such as anilines, oxazoles, pyridines, and pyrimidines, with (hetero)aromatic aldehydes and 8-hydroxiquinoline derivatives. After column chromatography and re-crystallization, the corresponding analogues were obtained in yields of 13⁻90%. The synthesized analogs were optimized with the utilization of a cytoprotection assay with chemically induced oxidative stress, and the most active compounds were further tested in orthogonal assays, a real time cell viability method, a fluorescence-activated cell sorting (FACS)-based assay measuring mitochondrial membrane potential changes, and gene expression analysis. The best candidates showed potent, nanomolar activity in all test systems and support the need for future studies in animal models of central nervous system (CNS) disorders.


Subject(s)
Cytoprotection/drug effects , Oxyquinoline/chemical synthesis , Oxyquinoline/pharmacology , Aldehydes/chemistry , Aniline Compounds/chemistry , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Hypoxia/genetics , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Oxyquinoline/chemistry , Structure-Activity Relationship
5.
Sci Rep ; 7: 42014, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205624

ABSTRACT

Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging.


Subject(s)
Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/administration & dosage , Animals , Autophagy/drug effects , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Drosophila , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacology
6.
Neuroscience ; 343: 384-397, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28012870

ABSTRACT

Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn 'postpartum', simulated proestrus, and hormone-treated 'postpartum' animals. After 'postpartum' withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn 'postpartum' females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during 'postpartum' stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 'postpartum' stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated 'postpartum' females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging 'synaptogenic hypothesis' of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness.


Subject(s)
Depression, Postpartum/pathology , Depressive Disorder, Major/pathology , Hippocampus/pathology , Neuronal Plasticity , Synapses/pathology , Animals , Corticosterone/blood , Depression, Postpartum/metabolism , Depressive Disorder, Major/metabolism , Disease Models, Animal , Estradiol/administration & dosage , Estradiol/metabolism , Female , Hippocampus/metabolism , Neuronal Plasticity/physiology , Ovariectomy , Postpartum Period , Proestrus/physiology , Progesterone/administration & dosage , Progesterone/metabolism , Rats, Sprague-Dawley , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...