Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37109694

ABSTRACT

Background and Objectives: Vitamin E is reported to expedite new bone formation in animal models, and this has led to a decrease in the time needed for treatment. In this study, human gingiva-derived stem cell-derived spheroids were examined to determine the effects of vitamin E on cell survival, osteogenic differentiation, and mineralization. Materials and Methods: Human gingiva-derived stem cells were used to create spheroids, which were then cultivated with vitamin E at doses of 0, 0.1, 1, 10, and 100 ng/mL. The morphological examination and the qualitative and quantitative vitality of the cells were assessed. Alizarin Red S staining and alkaline phosphatase activity assays were performed on days 7 and 14 to evaluate the osteogenic differentiation. The expression levels of RUNX2 and COL1A1 were assessed using a real-time polymerase chain reaction. Results: The addition of vitamin E did not appear to alter the spheroid's shape at the measured quantities without altering the diameter. During the culture time, the majority of the cells in the spheroids fluoresced green. Regardless of concentration, there were substantial increases in cell viability in the vitamin E-loaded groups on day 7 (p < 0.05). On day 14, the Alizarin Red S staining was statistically higher in the 1 ng/mL group compared to the unloaded control (p < 0.05). The addition of vitamin E to the culture enhanced the mRNA expression levels of RUNX2, OCN, and COL1A1 based on the real-time polymerase chain reaction data. Conclusions: We draw the conclusion that vitamin E may be used to promote the osteogenic differentiation of stem cell spheroids in light of these data.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Humans , Cell Survival , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Cells, Cultured , Gingiva , Stem Cells , Cell Differentiation
2.
Medicina (Kaunas) ; 59(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837578

ABSTRACT

Background and Objectives: A derivative of the enamel matrix was used to speed up periodontal regeneration, including the formation of new cementum, alveolar bone, and periodontal ligament. In this study, human gingiva-derived stem cell-derived cell spheroids were used to assess the effects of an enamel matrix derivative on cell viability, osteogenic differentiation, and mineralization. Materials and Methods: Human gingiva-derived stem cells were used to create spheroids, which were then coupled with unloaded control groups and an enamel matrix derivative at a final concentration of 2.7, 27, 270, and 2700 µg/mL. The morphological examination of the created stem cell spheroids took place on days 1, 3, 5, and 7. The Live/Dead Kit assay was used to determine the qualitative viability of cells on days 3 and 7. Using the Cell Counting Kit-8, the quantitative vitality of the cell spheroids was assessed on days 1, 3, and 5. On days 7 and 14, alkaline phosphatase activity assays and Alizarin Red S staining were carried out to examine the osteogenic differentiation of the cell spheroids. RUNX2 and COL1A1 expression levels on days 7 and 14 were determined using real-time polymerase chain reaction. Results: The added enamel matrix derivative at the tested concentrations did not significantly alter the morphology of the applied stem cells' well-formed spheroids on day 1. On days 3 and 7, the majority of the spheroids' cells fluoresced green while they were being cultivated. Alkaline phosphatase activity data revealed a substantial rise in the 2700 µg/mL group on day 7 when compared to the unloaded control (p < 0.05). On days 7 and 14, calcium deposits were distinctly seen in each group. In the 27 and 2700 µg/mL groups, the treatment with the enamel matrix derivative resulted in noticeably higher values for the Alizarin Red S staining (p < 0.05). qPCR results showed that adding an enamel matrix derivative to the culture of the 27 µg/mL group raised the level of RUNX2 mRNA expression. Conclusions: These results lead us to the conclusion that a derivative of the enamel matrix may be used to promote osteogenic differentiation in stem cell spheroids.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteogenesis , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Gingiva , Alkaline Phosphatase , Cell Differentiation , Stem Cells , Cells, Cultured , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...