Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 2753, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488078

ABSTRACT

Imbuing bio-inspired sensory devices with intelligent functions of human sensory organs has been limited by challenges in emulating the preprocessing abilities of sensory organs such as reception, filtering, adaptation, and sensory memory at the device level itself. Merkel cells, which is a part of tactile sensory organs, form synapse-like connections with afferent neuron terminals referred to as Merkel cell-neurite complexes. Here, inspired by structure and intelligent functions of Merkel cell-neurite complexes, we report a flexible, artificial, intrinsic-synaptic tactile sensory organ that mimics synapse-like connections using an organic synaptic transistor with ferroelectric nanocomposite gate dielectric of barium titanate nanoparticles and poly(vinylidene fluoride-trifluoroethylene). Modulation of the post-synaptic current of the device induced by ferroelectric dipole switching due to triboelectric-capacitive coupling under finger touch allowed reception and slow adaptation. Modulation of synaptic weight by varying the nanocomposite composition of gate dielectric layer enabled tuning of filtering and sensory memory functions.


Subject(s)
Artificial Organs , Sensory Receptor Cells/physiology , Touch/physiology , Biosensing Techniques/instrumentation , Humans , Learning/physiology , Memory/physiology , Merkel Cells , Neurites , Synapses/physiology , Touch Perception , Transistors, Electronic
2.
Nanoscale ; 11(9): 3916-3924, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30758368

ABSTRACT

Creating stretchable and transparent conductive electrodes for stretchable and transparent electronics is very challenging due to difficulties in obtaining adequate optical and mechanical properties simultaneously. Here, we designed a stretchable and transparent nanofiber-networked electrode (STNNE) based on a networked structure of electrospun stretchable nanofibers made from a mixture of polyurethane (PU)/reduced graphene oxide (rGO)/silver nanoparticles (AgNPs). The STNNE showed a sheet resistance as small as 210 Ω sq-1 at an optical transparency of ∼83%. In addition, the STNNE has up to 40% mechanical stretchability and relatively high electrical stability (i.e., a resistance change of 83% at 40% stretching). The good electrical conductance, mechanical stretchability, and electrical stability under static/dynamic stretching or after cyclic stretching are attributed to the high dispersion of AgNPs in the nanofibers, which creates more electrically conductive pathways and forms fused junctions at the intersections between nanofibers during electrospinning. As a demonstration, an STNNE with a simple selective-patterning process was employed to fabricate a stretchable capacitive touch sensor with a stretchable and transparent dielectric (PU) on a polydimethylsiloxane substrate. The signal output of the touch sensor upon touching under stretched conditions was nearly unchanged. This STNNE has great potential in stretchable and transparent electronics.

3.
ACS Appl Mater Interfaces ; 9(36): 30722-30732, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28825301

ABSTRACT

A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al0.27GaN0.73(∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO2, SO2, and HCHO gases exhibit high sensitivity (0.88-1.88 ppm-1), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

4.
ACS Appl Mater Interfaces ; 9(21): 18022-18030, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28485567

ABSTRACT

Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

5.
Adv Mater ; 28(3): 502-9, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26607674

ABSTRACT

A transparent stretchable (TS) gated sensor array with high optical transparency, conformality, and high stretchability of up to 70% is demonstrated. The TS-gated sensor array has high responsivity to temperature changes in objects and human skin. This unprecedented TS-gated sensor array, as well as the integrated platform of the TS-gated sensor with a transparent and stretchable strain sensor, show great potential for application to wearable skin electronics for recognition of human activity.


Subject(s)
Elasticity , Elastomers , Electrical Equipment and Supplies , Temperature , Equipment Design , Humans , Stress, Mechanical
6.
ACS Nano ; 9(9): 8801-10, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26277994

ABSTRACT

Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.


Subject(s)
Biosensing Techniques , Motion , Nanotechnology , Nanowires/chemistry , Elastomers/chemistry , Electronics , Equipment Design , Humans , Polystyrenes/chemistry , Polyurethanes/chemistry , Silver/chemistry
7.
Sci Rep ; 5: 12705, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26223845

ABSTRACT

Mechanically adaptive electronic skins (e-skins) emulate tactition and thermoception by cutaneous mechanoreceptors and thermoreceptors in human skin, respectively. When exposed to multiple stimuli including mechanical and thermal stimuli, discerning and quantifying precise sensing signals from sensors embedded in e-skins are critical. In addition, different detection modes for mechanical stimuli, rapidly adapting (RA) and slowly adapting (SA) mechanoreceptors in human skin are simultaneously required. Herein, we demonstrate the fabrication of a highly sensitive, pressure-responsive organic field-effect transistor (OFET) array enabling both RA- and SA- mode detection by adopting easily deformable, mechano-electrically coupled, microstructured ferroelectric gate dielectrics and an organic semiconductor channel. We also demonstrate that the OFET array can separate out thermal stimuli for thermoreception during quantification of SA-type static pressure, by decoupling the input signals of pressure and temperature. Specifically, we adopt piezoelectric-pyroelectric coupling of highly crystalline, microstructured poly(vinylidene fluoride-trifluoroethylene) gate dielectric in OFETs with stimuli to allow monitoring of RA- and SA-mode responses to dynamic and static forcing conditions, respectively. This approach enables us to apply the sensor array to e-skins for bio-monitoring of humans and robotics.


Subject(s)
Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Skin Temperature , Humans , Sensitivity and Specificity
8.
ACS Nano ; 9(6): 6252-61, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-25869253

ABSTRACT

Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PEDOT: PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.


Subject(s)
Elasticity , Elastomers/chemistry , Nanotubes, Carbon/chemistry , Electric Conductivity , Humans , Skin
9.
Small ; 11(25): 3054-65, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25703808

ABSTRACT

Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid-channel field-effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time-dependent behaviors of hybrid-channel FETs reveal a high sensitivity and selectivity toward the near-UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid-channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac ) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 10(10) and 4 × 10(10) per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 10(5) A W(-1) and 10(6) , respectively. Therefore, the hybrid-channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.

10.
Nanoscale ; 6(24): 15144-50, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25374120

ABSTRACT

Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

11.
Adv Mater ; 26(5): 796-804, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24493054

ABSTRACT

Diverse signals generated from the sensing elements embedded in flexible electronic skins (e-skins) are typically interfered by strain energy generated through processes such as touching, bending, stretching or twisting. Herein, we demonstrate a flexible bimodal sensor that can separate a target signal from the signal by mechanical strain through the integration of a multi-stimuli responsive gate dielectric and semiconductor channel into the single field-effect transistor (FET) platform.

12.
J Nanosci Nanotechnol ; 14(11): 8596-601, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25958569

ABSTRACT

To develop physically flexible electronics, high performance and mechanical stability of component materials and devices are required. For a flexible display, a backplane with flexible thin-film transistors (TFTs) must be developed. Gate insulating materials with excellent electrical and mechanical properties are highly important to the development of flexible TFTs. We investigated nanocomposite gate dielectrics composed of polyimide (PI) because of their superior thermal stability, as well as different inorganic HfO2, TiO2, and Al2O3 nanoparticles with high dielectric constants. Nanocomposite gate dielectrics of HfO2 nanoparticles and PI lowered leakage current density and increased the relative dielectric constant compared to PI solely because of a high degree of dispersion. Pentacene TFTs with HfO2 nanocomposite gate insulators also showed higher field-effect mobility (µ), smaller subthreshold swing, and an enhanced on/off current ratio (I(on/off)) compared to those of the PI gate dielectric. In addition, mechanical cyclic bending tests involving bending cycles of 2 x 10(5) time sat a bending radius of 5 mm showed improvement in electrical stability of nanocomposite gate insulators with a change in leakage current density of nanocomposite gate insulators below 30%.

13.
J Mater Chem B ; 2(32): 5202-5208, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-32261662

ABSTRACT

The two-dimensional nanocarbon material graphene (Gr) has been extensively studied due to its many potential biomedical applications including regenerative medicine, drug delivery, bioimaging, and biosensing. The effects of nitrogen-functionalisation on chemically driven Gr (CDG) cellular responses were studied by investigating the generation of reactive oxygen species (ROS) and mitochondrial morphology as well as focal adhesion, shape, proliferation and viability of HeLa cells grown on functionalised CDG (f-CDG) films. The drop casting of CDG nanosheets formed thin CDG films and the formation of nitrogen groups on the f-CDG thin films was mediated by N2 plasma treatment without the formation of observable surface defects. N-containing functional groups on the CDG thin films contributed to an increase in hydrophilicity. The proliferation and viability of HeLa cells grown on the f-CDG thin films were enhanced compared to those grown on CDG films alone and control samples. N-functionalisation of CDG thin films effectively reduced the ROS generated from cells on the f-CDG films. These results indicate that N2 plasma treatment of CDG is very useful in improving biocompatibility for the bio-application of graphene materials.

14.
J Nanosci Nanotechnol ; 13(12): 8002-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266180

ABSTRACT

During the operational service of flexible electronic systems, component devices are subject to not only mechanical deformation but also environmental stimulation such as temperature and humidity. Therefore, the stability of flexible devices under simultaneous loading of multi-variable environmental factors including mechanical deformation needs to be studied. In this work, changes in device characteristics under simultaneous mechanical bending and heating of organic thin film transistors (OTFTs) were investigated in a mechanical bending system having capability of substrate heating. Simultaneous loading of mechanical deformation and heating of OTFTs accelerated the change of device characteristics such as field-effect mobility, threshold voltage, and subthreshold swing at elevated temperature. The results indicate that the stability of flexible devices under multi-variable loading needs to be tested for better understanding of the electrical behaviours of device characteristics in flexible electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...