Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Stem Cell Res Ther ; 11(1): 63, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32127052

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder of unknown etiology, but is closely associated with damage to dopaminergic neurons. MSA progression is rapid. Hence, long-term drug treatments do not have any therapeutic benefits. We assessed the inhibitory effect of mesenchymal stem cells (MSCs) on double-toxin-induced dopaminergic neurodegenerative MSA. RESULTS: Behavioral disorder was significantly improved and neurodegeneration was prevented following MSC transplantation. Proteomics revealed lower expression of polyamine modulating factor-binding protein 1 (PMFBP1) and higher expression of 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), but these changes were reversed after MSC transplantation. In the in vitro study, the 6-OHDA-induced effects were reversed following co-culture with MSC. However, PMFBP1 knockdown inhibited the recovery effect due to the MSCs. Furthermore, HMGCL expression was decreased following co-culture with MSCs, but treatment with recombinant HMGCL protein inhibited the recovery effects due to MSCs. CONCLUSIONS: These data indicate that MSCs protected against neuronal loss in MSA by reducing polyamine- and cholesterol-induced neural damage.


Subject(s)
Bone Marrow Cells/metabolism , Cholesterol/adverse effects , Mesenchymal Stem Cells/metabolism , Multiple System Atrophy/prevention & control , Multiple System Atrophy/therapy , Polyamines/adverse effects , Animals , Humans , Male , Multiple System Atrophy/pathology , Rats , Rats, Sprague-Dawley , Rats, Wistar
2.
Biomol Ther (Seoul) ; 28(2): 152-162, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31813204

ABSTRACT

Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

3.
Cell Commun Signal ; 17(1): 104, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31438968

ABSTRACT

BACKGROUND: Alcohol abuse and alcoholism lead to alcohol liver disease such as alcoholic fatty liver. Parkin is a component of the multiprotein E3 ubiquitin ligase complex and is associated with hepatic lipid accumulation. However, the role of parkin in ethanol-induced liver disease has not been reported. Here, we tested the effect of parkin on ethanol-induced fatty liver in parkin knockout (KO) mice with chronic ethanol feeding. METHODS: Male wild type (WT) and parkin KO mice (10-12 weeks old, n = 10) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 10 days. Liver histological, biochemical, and gene-expression studies were performed. RESULTS: Parkin KO mice exhibited lower hepatosteatosis after ethanol consumption. Because several studies reported that ß-catenin is a critical factor in ethanol metabolism and protects against alcohol-induced hepatosteatosis, we investigated whether parkin changes ß-catenin accumulation in the liver of ethanol-fed mice. Our results show that ß-catenin was greatly accumulated in the livers of ethanol-fed parkin KO mice compared to ethanol-fed WT mice, and that parkin binds to ß-catenin and promotes its degradation it by ubiquitination. Moreover, the ß-catenin inhibitor IWR-1 abrogated the attenuation of ethanol-induced hepatic lipid accumulation by parkin deficiency in the livers of parkin KO mice and parkin siRNA-transfected human hepatic cell line. CONCLUSIONS: Parkin deficiency prevents ethanol-induced hepatic lipid accumulation through promotion of ß-catenin signaling by failure of ß-catenin degradation.


Subject(s)
Lipids/chemistry , Ubiquitin-Protein Ligases/metabolism , beta Catenin/metabolism , Animals , Ethanol/pharmacology , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Ubiquitin-Protein Ligases/deficiency
4.
Int J Mol Sci ; 20(11)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146332

ABSTRACT

Neuroinflammation is implicated in dopaminergic neurodegeneration. We have previously demonstrated that (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor, has anti-inflammatory properties in several inflammatory disease models. We investigated whether MMPP could protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell loss and behavioral impairment. Imprinting control region (ICR) mice (8 weeks old, n = 10 per group) were administered MMPP (5 mg/kg) in drinking water for 1 month, and injected with MPTP (15 mg/kg, four times with 2 h intervals) during the last 7 days of treatment. MMPP decreased MPTP-induced behavioral impairments in rotarod, pole, and gait tests. We also showed that MMPP ameliorated dopamine depletion in the striatum and inflammatory marker elevation in primary cultured neurons by high-performance liquid chromatography and immunohistochemical analysis. Increased activation of STAT3, p38, and monoamine oxidase B (MAO-B) were observed in the substantia nigra and striatum after MPTP injection, effects that were attenuated by MMPP treatment. Furthermore, MMPP inhibited STAT3 activity and expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), inducible nitric oxide synthase (iNOS), and glial fibrillary acidic protein (GFAP) in 1-methyl-4-phenylpyridinium (MPP+; 0.5 mM)-treated primary cultured cells. However, mitogen-activated protein kinase (MAPK) inhibitors augmented the activity of MMPP. Collectively, our results suggest that MMPP may be an anti-inflammatory agent that attenuates dopaminergic neurodegeneration and neuroinflammation through MAO-B and MAPK pathway-dependent inhibition of STAT3 activation.


Subject(s)
Dopaminergic Neurons/metabolism , MPTP Poisoning/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cells, Cultured , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dopamine/metabolism , Dopaminergic Neurons/pathology , Glial Fibrillary Acidic Protein/metabolism , Inflammation , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred ICR , Monoamine Oxidase/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Mol Ther Nucleic Acids ; 16: 63-72, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30849743

ABSTRACT

We previously found that lung tumor development was reduced in a presenilin (PS) Alzheimer's disease (AD) mouse model. Here, we investigated whether this reducing effect could occur in a different AD mouse model. We investigated urethane-induced (1 mg/g) lung tumor development and melanoma growth in Swedish amyloid precursor protein (SwAPP) transgenic mice. The expression of chitinase-3-like-1 (Chi3L1) increased during lung tumor development and melanoma growth, which was accompanied by an increase in the activity of signal transducer and activator of transcription 3 (STAT3) and the downregulation of miRNA342-3p in wild-type mice. Like tumor development, the expression of Chi3L1 and STAT3 activity was reduced in the SwAPP mice, whereas the expression of miRNA342-3p was upregulated. In addition, Chi3L1 knockdown in the lung cancer and melanoma tissues reduced cancer cell growth and STAT3 activity but enhanced miRNA342-3p expression. However, the miRNA342-3p mimic decreased Chi3L1 expression, cancer cell growth, and STAT3 activity. Moreover, a STAT3 inhibitor reduced Chi3L1 expression and cancer cell growth but enhanced miRNA342-3p expression. These data showed that lung tumor development was reduced through the decrease of Chi3L1 expression via the STAT3-dependent upregulation of miRNA342-3p. This study indicates that lung tumor development could be reduced in SwAPP AD mice.

6.
Knee Surg Relat Res ; 31(1): 37-43, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30871291

ABSTRACT

PURPOSE: This study was to evaluate changes of the mechanical loading pattern after anatomic anterior cruciate ligament (ACL) reconstruction by analyzing uptake patterns using combined single-photon emission computerized tomography and conventional computerized tomography (SPECT/CT). MATERIALS AND METHODS: On SPECT/CT, high signal intensity of the articular surface which shows biological activity and mean increase of mechanical loading was compared with that of the tibiofemoral shaft as a comparative signal. The proportion of positive signals was evaluated in all compartments of the operated knee. Analysis was performed according to combined injury. RESULTS: A relatively high proportion of positive signals was detected in the posterior zone of the lateral tibial plateau (23.5%) and trochlear groove (23.5%) although increased signal intensity was detected in all compartments. There was no statistical difference depending on the presence of combined injury and between single-bundle and double-bundle ACL reconstruction. CONCLUSIONS: Following anatomic ACL reconstruction, higher signal intensity was detected, particularly in the posterior part of the lateral tibial plateau and trochlear groove. Close observation for further signal changes or osteoarthritic changes would be required even if there was no combined injury and anatomic reconstruction was performed.

7.
Article in English | MEDLINE | ID: mdl-28782486

ABSTRACT

Alzheimer's disease is the most common form of dementia. It is characterized by betaamyloid peptide fibrils which are extracellular deposition of a specific protein, accompanied by extensive neuroinflammation. Various studies show the presence of a number of inflammation markers in the AD brain: elevated inflammatory cytokines and chemokines, and an accumulation of activated microglia in the damaged regions. NF-κB is a family of redox sensitive transcriptional factors, and it is known that NF-κB has binding sites in the promoter region of the genes involved in amyloidogenesis and inflammation. Long-term use of non-steroidal anti-inflammatory drugs prevents progression of AD and delays its onset, suggesting that there is a close correlation between NF-κB and AD pathogenesis. This study aims to (1) assess the association between NF-κB activity and AD through discussion of a variety of experimental and clinical studies on AD and (2) review treatment strategies designed to treat or prevent AD with NF-κB inhibitors.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Encephalitis/metabolism , NF-kappa B/metabolism , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Animals , Encephalitis/complications , Humans , Models, Neurological , NF-kappa B/antagonists & inhibitors
9.
Brain Behav Immun ; 73: 282-293, 2018 10.
Article in English | MEDLINE | ID: mdl-29782911

ABSTRACT

Estrogen is well known to have a preventative effect in Alzheimer's disease (AD) pathology. Several studies have demonstrated that nuclear factor kappa-B (NF-ĸB) can contribute to the effects of estrogen on the development of AD. We investigated whether NF-ĸB affects amyloid-beta (Aß)-induced memory impairment in an estrogen-lacking condition. In the present study, nine-week-old Institute cancer research (ICR) mice were ovariectomized to block estrogen stimulation. Ten weeks after the ovariectomization, mice were administered with Aß (300 pmol) via intracerebroventricular (ICV) infusion for 2 weeks. Memory impairment, neuroinflammatory protein expression, and amyloidogenic pathways were then measured. Ovariectomized mice demonstrated severe memory impairment, Aß accumulation, neprilysin downregulation, and activation of NF-ĸB signaling compared to sham-control mice. In vitro experiments demonstrated that ß-estradiol (10 µM) inhibited Aß (1 µM)-induced neuroinflammation in microglial BV-2 cells and prevented Aß-induced cell death in primary cultured neuronal cells. As in in vivo experiments, NF-ĸB activation was significantly upregulated in in vitro experiments. Furthermore ß-estradiol treatment inhibited NF-ĸB activation in both of microglial BV-2 cells and cultured neuronal cells. These findings suggest that estrogen may protect against memory impairment through the regulation of Aß accumulation and neurogenic inflammation by inhibiting NF-κB activity.


Subject(s)
Amyloid beta-Peptides/metabolism , Estrogens/physiology , Memory Disorders/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/physiology , Animals , Astrocytes/metabolism , Cyclooxygenase 2/metabolism , Estradiol/pharmacology , Estrogens/deficiency , Estrogens/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Memory Disorders/physiopathology , Mice , Mice, Inbred ICR , Microglia/metabolism , NF-kappa B/metabolism , Neuroimmunomodulation/immunology , Nitric Oxide Synthase Type II/metabolism , Ovariectomy/methods , Primary Cell Culture , Signal Transduction/drug effects
10.
Theranostics ; 7(18): 4632-4642, 2017.
Article in English | MEDLINE | ID: mdl-29158850

ABSTRACT

Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo. It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA-Binding Proteins/metabolism , DNA/metabolism , Lung Neoplasms/drug therapy , Phthalic Acids/pharmacology , STAT3 Transcription Factor/metabolism , A549 Cells , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
11.
Theranostics ; 7(15): 3624-3637, 2017.
Article in English | MEDLINE | ID: mdl-29109765

ABSTRACT

Some epidemiological studies suggest an inverse correlation between cancer incidence and Alzheimer's disease (AD). In this study, we demonstrated experimental evidences for this inverse relationship. In the co-expression network analysis using the microarray data and GEO profile of gene expression omnibus data analysis, we showed that the expression of peroxiredoxin 6 (PRDX6), a tumor promoting protein was significantly increased in human squamous lung cancer, but decreased in mutant presenilin 2 (PS2) containing AD patient. We also found in animal model that mutant PS2 transgenic mice displayed a reduced incidence of spontaneous and carcinogen-induced lung tumor development compared to wildtype transgenic mice. Agreed with network and GEO profile study, we also revealed that significantly reduced expression of PRDX6 and activity of iPLA2 in these animal models. PS2 mutations increased their interaction with PRDX6, thereby increasing iPLA2 cleavage via increased γ-secretase leading to loss of PRDX6 activity. However, knockdown or inhibition of γ-secretase abolished the inhibitory effect of mutant PSs. Moreover, PS2 mutant skin fibroblasts derived from patients with AD showed diminished iPLA2 activity by the elevated γ-secretase activity. Thus, the present data suggest that PS2 mutations suppress lung tumor development by inhibiting the iPLA2 activity of PRDX6 via a γ-secretase cleavage mechanism and may explain the inverse relationship between cancer and AD incidence.


Subject(s)
Carcinogenesis , Down-Regulation , Lung Neoplasms/physiopathology , Mutation , Peroxiredoxin VI/biosynthesis , Presenilin-2/metabolism , Alzheimer Disease/complications , Animals , Disease Models, Animal , Gene Expression Profiling , Humans , Male , Mice, Inbred BALB C , Mice, Transgenic , Microarray Analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Peroxiredoxin VI/metabolism , Presenilin-2/genetics
12.
Neuromolecular Med ; 19(4): 555-570, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29052076

ABSTRACT

Alzheimer's disease (AD) is pathologically characterized by an excessive accumulation of amyloid-beta (Aß) fibrils within the brain. We tested the anti-inflammatory and anti-amyloidogenic effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. We examined whether MMPP (5 mg/kg in drinking water for 1 month) prevents amyloidogenesis and cognitive impairment on AD model mice induced by intraperitoneal LPS (250 µg/kg daily 7 times) injections. Additionally, we investigated the anti-neuroinflammatory and anti-amyloidogenic effect of MMPP (1, 5, and 10 µg/mL) in LPS (1 µg/mL)-treated cultured astrocytes and microglial BV-2 cells. MMPP treatment reduced LPS-induced memory loss. This memory recovery effect was associated with the reduction of LPS-induced inflammatory proteins; cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as activation of microglial cells and astrocytes in the brain. Furthermore, MMPP reduced LPS-induced ß-secretase and Aß generation. In in vitro study, LPS-induced expression of inflammatory proteins and amyloidogenic proteins was decreased in microglial BV-2 cells and cultured astrocytes by MMPP treatment. Moreover, MMPP treatment suppressed DNA binding activities of the activation of STAT3 in in vivo and in vitro. These results indicated that MMPP inhibits LPS-induced amyloidogenesis and neuroinflammation via inhibition of STAT3.


Subject(s)
Brain/drug effects , Guaiacol/analogs & derivatives , Memory Disorders/drug therapy , Nerve Tissue Proteins/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects , Amyloid Precursor Protein Secretases/biosynthesis , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/genetics , Animals , Astrocytes/drug effects , Avoidance Learning/drug effects , Brain/metabolism , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , DNA/metabolism , Gene Expression Regulation/drug effects , Guaiacol/pharmacology , Guaiacol/therapeutic use , Inflammation , Lipopolysaccharides/toxicity , Male , Maze Learning/drug effects , Mice , Mice, Inbred ICR , Microglia/drug effects , Nerve Tissue Proteins/physiology , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Peptide Fragments/biosynthesis , Peptide Fragments/genetics , Protein Domains , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , STAT3 Transcription Factor/chemistry , STAT3 Transcription Factor/physiology
13.
Oncotarget ; 8(40): 68654-68667, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978145

ABSTRACT

Alzheimer's disease (AD) is one of the most common forms of dementia and is characterized by neuroinflammation and amyloidogenesis. Here we investigated the effects of KRICT-9 on neuroinflammation and amyloidogenesis in in vitro and in vivo AD models. We found that KRICT-9 decreased lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells and astrocytes while reducing nitric oxide generation and expression of inflammatory marker proteins (iNOS and COX-2) as well as APP, BACE1, C99, Iba-1, and GFAP. KRICT-9 also inhibited ß-secretase. Pull-down assays and docking model analyses indicated that KRICT-9 binds to the DNA binding domain of signal transducer and activator of transcription 3 (STAT3). KRICT-9 also decreased ß-secretase activity and Aß levels in tissues from LPS-induced mice brains, and it reversed memory impairment in mice. These experiments demonstrated that KRICT-9 protects against LPS-induced neuroinflammation and amyloidogenesis by inhibiting STAT3 activity. This suggests KRICT-9 or KRICT-9-inspired reagents could be used as therapeutic agents to treat AD.

14.
Biomol Ther (Seoul) ; 25(5): 535-544, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28655070

ABSTRACT

Carnosol is a phenolic antioxidant present in rosemary (Rosmarinus officinalis). It is known for anti-inflammatory effects, analgesic activity and anti-cancer effects. However, no study has been dedicated yet to its effect on atopic dermatitis (AD). Here, we show that carnosol effectively inhibited LPS-induced nitric oxide (NO) generation and expression of inflammatory marker proteins (iNOS and COX-2) in RAW 264.7 cells. In addition, carnosol effectively inhibits the phosphorylation of STAT3 and DNA binding activity in RAW 264.7 cells. Pull down assay and docking model analysis showed that carnosol directly binds to the DNA binding domain (DBD) of STAT3. We next examined the anti-atopic activity of carnosol (0.05 µg/cm2) using 5% Phthalic anhydride (PA)-induced AD model in HR1 mice. Carnosol treatment significantly reduced 5% PA-induced AD like skin inflammation in skin tissues compared with control mice. Moreover, carnosol treatment inhibits the expression of iNOS and COX-2 in skin tissue. In addition, the levels of TNF-α, IL-1ß, and Immunoglobulin-E in blood serum was significantly decreased in carnosol treated mice compared with those of 5% PA treated group. Furthermore, the activation of STAT3 in skin tissue was decreased in carnosol treated mice compared with control mice. In conclusion, these findings suggest that carnosol exhibited a potential anti-AD activity by inhibiting pro-inflammatory mediators through suppression of STAT3 activation via direct binding to DBD of STAT3.

15.
Theranostics ; 7(7): 2033-2045, 2017.
Article in English | MEDLINE | ID: mdl-28656059

ABSTRACT

PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in the development of Parkinson's disease (PD). Although the neuroprotective role of parkin is well known, the mechanism of PARK2's function in neural stem differentiation has not yet been thoroughly studied. Co-expressions network analysis showed that synaptosomal-associated protein 25 (SNAP-25) and brain-derived neurotrophic factor (BDNF) were positively correlated with parkin, but negatively correlated with p21 in human patient brain. We investigated a link between the ubiquitin E3 ligase parkin and proteasomal degradation of p21 for the control of neural stem cell differentiation. We found that the neurogenesis was lowered in PARK2 knockout (KO) mice compared with non-tg mice. Expression of the marker protein for neural cell differentiation such as class III beta tubulin (TUBBIII), glial fibrillary acidic protein (GFAP) and neurofilament, as well as SNAP25 and BDNF, was down regulated in PARK2 KO mice. Associated with the loss of differentiation function, p21 protein was highly accumulated in the neural stem cells of PARK2 KO mice. We discovered that p21 directly binds with parkin and is ubiquitinated by parkin which resulted in the loss of cell differentiation ability. Introduction of p21 shRNA in PARK2 KO mice significantly rescued the differentiation efficacy as well as SNAP25 and BDNF expression. c-Jun N-terminal kinase (JNK) pathway is implicated in neurogenesis and p21 degradation. We also defined the decreased p21 ubiquitination and differentiation ability were reversed after treatment with JNK inhibitor, SP600125 in PARK2 KO mice derived neural stem cells. Thus, the present study indicated that parkin knockout inhibits neural stem cell differentiation by JNK-dependent proteasomal degradation of p21.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , MAP Kinase Kinase 4/metabolism , Neural Stem Cells/physiology , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Animals , Humans , Mice , Mice, Knockout , Ubiquitin-Protein Ligases/genetics
16.
Oncotarget ; 8(28): 45517-45530, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28489589

ABSTRACT

Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and ß-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 µg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aß1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms.


Subject(s)
Amyloidosis/metabolism , Biological Products/pharmacology , Memory Disorders/metabolism , Oxidative Stress/drug effects , Stramenopiles/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloidosis/drug therapy , Amyloidosis/etiology , Amyloidosis/physiopathology , Animals , Astrocytes/metabolism , Biological Products/chemistry , Cell Line , Disease Models, Animal , Gene Expression , Genes, Reporter , Lipopolysaccharides/adverse effects , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Mice , Microglia/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
17.
J Invest Dermatol ; 137(6): 1215-1222, 2017 06.
Article in English | MEDLINE | ID: mdl-28163068

ABSTRACT

Hyaluronic acid (HA) is the major glycosaminoglycan in the extracellular matrix and has been implicated in several functions in skin cells. However, evidence is lacking regarding the HA signaling in sebaceous glands, and its potential role needs to be clarified. We investigated the role of HA in lipid production in sebaceous glands in an experimental study of human sebocytes followed by a clinical study. We first examined the effects of HA on sebaceous glands in hamsters and intradermal injection of HA into hamster auricles decreased both the size of sebaceous glands and the level of lipid production. We demonstrated that human skin sebaceous glands in vivo and sebocytes in vitro express CD44 (HA binding receptor) and that HA downregulates lipid synthesis in a dose-dependent manner. To evaluate the clinical relevance of HA in human skin, 20 oily participants were included in a double-blind, placebo-controlled, split-face study, and the HA-treated side showed a significant decrease in sebum production. The results of this study indicate that HA plays a functional role in human sebaceous gland biology and HA signaling is an effective candidate in the management of disorders in which sebum production is increased.


Subject(s)
Hyaluronic Acid/administration & dosage , Lipids/biosynthesis , Sebaceous Glands/drug effects , Sebaceous Glands/metabolism , Sebum/drug effects , Adult , Animals , Blotting, Western , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cricetinae , Disease Models, Animal , Double-Blind Method , Female , Healthy Volunteers , Humans , Hyaluronic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Middle Aged , Random Allocation , Real-Time Polymerase Chain Reaction , Sebum/metabolism , Sensitivity and Specificity
18.
Neuropharmacology ; 117: 21-32, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28132781

ABSTRACT

Neuroinflammation is significant in the pathogenesis and development of Alzheimer's disease (AD). Previously, we showed lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairment. We investigated the possible preventive effects of punicalagin (PUN), a component of pomegranate, on memory deficiency caused by LPS, along with the fundamental mechanisms. LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory effects of PUN. PUN (1.5 mg/kg) ameliorates LPS (250 µg/kg daily 7 times)-induced memory impairment as well as prevents the LPS-induced expression of inflammatory proteins. In in vitro study, we also found that PUN (1 µg/ml) inhibited the LPS-(10, 20 and 50 µM) induced expression of iNOS and Cox-2 as well as the production of ROS, NO, TNF-α and IL-1ß. PUN also suppress activation of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into the nucleus in LPS treated mouse brain and cultured astrocytes and microglial BV-2 cells. Consistent with the inhibitory effect on neuro inflammation, PUN inhibited LPS-induced Aß1-42 generation through down-regulation of APP and BACE1 expression in in vivo and in vitro study. Moreover, PUN directly binds to NF-κB subunit p50 evidenced by a docking model and pull down assay. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of NF-κB activation.


Subject(s)
Hydrolyzable Tannins/pharmacology , Inflammation Mediators/metabolism , Inflammation/prevention & control , Memory Disorders/prevention & control , NF-kappa B/antagonists & inhibitors , Oxidative Stress/drug effects , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Astrocytes/drug effects , Behavior, Animal/drug effects , Brain/metabolism , Cells, Cultured , I-kappa B Proteins/metabolism , Lipopolysaccharides , Male , Memory Disorders/chemically induced , Mice , Microglia/drug effects , Molecular Docking Simulation , Rats
19.
Redox Biol ; 11: 456-468, 2017 04.
Article in English | MEDLINE | ID: mdl-28086194

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra. Parkin (which encoded by Park2), an E3 ubiquitin ligase, is the most frequently mutated gene that has casually been linked to autosomal recessive early onset familial PD. We tested the effect of Park2 on ethanol-induced dopaminergic neurodegeneration in Park2 knockout (KO) transgenic mice after chronic ethanol feeding. Male Park2 wild type (WT) and KO mice (8 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 2 weeks, and compared their responses. We found that knockout of Park2 exacerbates ethanol-induced behavioral impairment as well as dopamine depletion. In the mechanism study, we found that knockout of Park2 increased reactive oxygen species (ROS) production, mitophagy formation, mitochondrial dysfunction, and expression of pro-apoptotic proteins, but decreased expression of pro-autophagic proteins. Knockout of Park2 also increased ethanol-induced activation of p38 mitogen-activated protein kinase. In addition, ROS production, mitophagy formation, mitochondrial dysfunction, and expression of pro-apoptotic proteins were increased, but expression of pro-autophagic proteins were decreased by a treatment of ethanol (100µM) in Park2 siRNA-transfacted PC12 cells (5µM). Moreover, the exacerbating effects of Park2 deletion on ethanol-induced ROS generation, mitophagy, mitochondrial dysfunction as well as cell death were reduced by p38 specific inhibitor (SB203580) in in vitro (10µM) and in vivo 10mg/kg). Park2 deficiency exacerbates ethanol-induced dopaminergic neuron damage through p38 kinase dependent inhibition of autophagy and mitochondrial function.


Subject(s)
Mitochondria/metabolism , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Ethanol/administration & dosage , Gene Expression Regulation/drug effects , Humans , Imidazoles/administration & dosage , Mice , Mice, Knockout , Mitochondria/pathology , Mitophagy/drug effects , PC12 Cells , Parkinson Disease/genetics , Parkinson Disease/pathology , Pyridines/administration & dosage , Rats , Reactive Oxygen Species/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Oncotarget ; 7(30): 46943-46958, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27409674

ABSTRACT

Neuroinflammation is implicated for dopaminergic neurodegeneration. Sulfur compounds extracted from garlic have been shown to have anti-inflammatory properties. Previously, we have investigated that thiacremonone, a sulfur compound isolated from garlic has anti-inflammatory effects on several inflammatory disease models. To investigate the protective effect of thiacremonone against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment and dopaminergic neurodegeneration, 8 week old ICR mice were given thiacremonone (10 mg/kg) in drinking water for 1 month and received intraperitoneal injection of MPTP (15 mg/kg, four times with 2 h interval) during the last 7 days of treatment. Our data showed that thiacremonone decreased MPTP-induced behavioral impairments (Rotarod test, Pole test, and Gait test), dopamine depletion and microglia and astrocytes activations as well as neuroinflammation. Higher activation of p38 was found in the substantia nigra and striatum after MPTP injection, but p38 activation was reduced in thiacremonone treated group. In an in vitro study, thiacremonone (1, 2, and 5 µg/ml) effectively decreased MPP+ (0.5 mM)-induced glial activation, inflammatory mediators generation and dopaminergic neurodegeneration in cultured astrocytes and microglial BV-2 cells. Moreover, treatment of p38 MAPK inhibitor SB203580 (10 µM) further inhibited thiacremonone induced reduction of neurodegeneration and neuroinflammation. These results indicated that the anti-inflammatory compound, thiacremonone, inhibited neuroinflammation and dopaminergic neurodegeneration through inhibition of p38 activation.


Subject(s)
Behavioral Symptoms/drug therapy , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Inflammation/drug therapy , Thiophenes/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Anti-Inflammatory Agents/therapeutic use , Astrocytes/drug effects , Behavioral Symptoms/chemically induced , Cell Line , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Humans , Imidazoles/pharmacology , Inflammation/chemically induced , Inflammation/pathology , Male , Mice , Mice, Inbred ICR , Microglia/drug effects , Neuroprotective Agents/therapeutic use , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...