Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
RSC Med Chem ; 15(2): 704-719, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38389877

ABSTRACT

Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIß (PI4KIIIß) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIß inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 µM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 µM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIß inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIß was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 µM for PI4KIIIß, but not for PI4KIIIα (>10 µM). Therefore, 7f represents a highly potent and selective PI4KIIIß inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.

3.
Int J Nanomedicine ; 18: 1561-1575, 2023.
Article in English | MEDLINE | ID: mdl-37007987

ABSTRACT

Introduction: The ongoing SARS-CoV-2 pandemic has affected public health, the economy, and society. This study reported a nanotechnology-based strategy to enhance the antiviral efficacy of the antiviral agent remdesivir (RDS). Results: We developed a nanosized spherical RDS-NLC in which the RDS was encapsulated in an amorphous form. The RDS-NLC significantly potentiated the antiviral efficacy of RDS against SARS-CoV-2 and its variants (alpha, beta, and delta). Our study revealed that NLC technology improved the antiviral effect of RDS against SARS-CoV-2 by enhancing the cellular uptake of RDS and reducing SARS-CoV-2 entry in cells. These improvements resulted in a 211% increase in the bioavailability of RDS. Conclusion: Thus, the application of NLC against SARS-CoV-2 may be a beneficial strategy to improve the antiviral effects of antiviral agents.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lipids
4.
Allergy ; 78(5): 1292-1306, 2023 05.
Article in English | MEDLINE | ID: mdl-36609802

ABSTRACT

BACKGROUND: Staphylococcus (S) aureus colonization is known to cause skin barrier disruption in atopic dermatitis (AD) patients. However, it has not been studied how S. aureus induces aberrant epidermal lipid composition and skin barrier dysfunction. METHODS: Skin tape strips (STS) and swabs were obtained from 24 children with AD (6.0 ± 4.4 years) and 16 healthy children (7.0 ± 4.5 years). Lipidomic analysis of STS samples was performed by mass spectrometry. Skin levels of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) were evaluated. The effects of MSSA and MRSA were evaluated in primary human keratinocytes (HEKs) and organotypic skin cultures. RESULTS: AD and organotypic skin colonized with MRSA significantly increased the proportion of lipid species with nonhydroxy fatty acid sphingosine ceramide with palmitic acid ([N-16:0 NS-CER], sphingomyelins [16:0-18:0 SM]), and lysophosphatidylcholines [16:0-18:0 LPC], but significantly reduced the proportion of corresponding very long-chain fatty acids (VLCFAs) species (C22-28) compared to the skin without S. aureus colonization. Significantly increased transepidermal water loss (TEWL) was found in MRSA-colonized AD skin. S. aureus indirectly through interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, and IL-33 inhibited expression of fatty acid elongase enzymes (ELOVL3 and ELOVL4) in HEKs. ELOVL inhibition was more pronounced by MRSA and resulted in TEWL increase in organotypic skin. CONCLUSION: Aberrant skin lipid profiles and barrier dysfunction are associated with S. aureus colonization in AD patients. These effects are attributed to the inhibition of ELOVLs by S. aureus-induced IL-1ß, TNF-α, IL-6, and IL-33 seen in keratinocyte models and are more prominent in MRSA than MSSA.


Subject(s)
Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Child , Humans , Staphylococcus aureus , Interleukin-33/pharmacology , Interleukin-6 , Dermatitis, Atopic/pathology , Lipids
5.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012405

ABSTRACT

Liquid biopsy has been emerging for early screening and treatment monitoring at each cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein, we aimed to develop a blood test for the early detection of breast cancer with cost-effective and high-throughput considerations in order to combat the challenges associated with precision oncology using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated circulating transcripts (TACTs) is performed by means of four different machine learning techniques (artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy (85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity, specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic tool for liquid biopsy.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Early Detection of Cancer/methods , Female , Hematologic Tests , Humans , Precision Medicine , RNA, Messenger/genetics , Sensitivity and Specificity
6.
Cancer Sci ; 113(6): 2097-2108, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35325509

ABSTRACT

MicroRNAs are reported as promising biomarkers for the diagnosis and treatment of breast cancer. miR-1260b is identified as a tumor-associated noncoding microRNA in other cancers, although the role of miR-1260b and its clinical relevance in breast cancer remain unclear. In this study, miR-1260b as a potential prognostic biomarker was observed by univariate and multivariate Cox regression analyses in 102 breast tumor tissues. The tumorigenic role of miR-1260b in terms of proliferation, apoptosis, and migration of breast cancer cells was investigated using gain- and loss-of-function assays in vitro. Additionally, the potential early diagnosis and treatment monitoring marker of miR-1260b was validated in 129 plasma samples. We found that high miR-1260b expression was markedly associated with bulky tumor size, advanced stage, and lymph node invasion. Particularly, the high-miR-1260b-expression group showed shorter overall survival than the low-miR-1260b-expression group. The inhibition of oncogenic miR-1260b induced apoptosis and decreased migration and invasion of MDA-MB-231 cells. CASP8 was revealed as a direct target gene of miR-1260b, which is closely related to apoptosis. Furthermore, miR-1260b expression levels in plasma were significantly higher in patients with breast cancer than in healthy controls. The patients who tested positive for miR-1260b showed 16.3- and 18.2-fold higher risks in the early stage and locally advanced stage, respectively, compared with healthy controls, and the risk was decreased 6.2-fold after neoadjuvant chemotherapy. Taken together, miR-1260b may be a potential novel diagnostic, prognostic, and therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms , Caspase 8 , MicroRNAs , Apoptosis/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Caspase 8/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Prognosis
7.
Bioorg Med Chem Lett ; 64: 128673, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35292344

ABSTRACT

Small-molecule inhibitors exhibiting broad-spectrum enteroviral inhibition by targeting viral replication proteins are highly desirable in antiviral drug discovery. We used the previously identified antiviral compound 1 as the starting material to develop a novel compound series with high efficacy against human rhinovirus (hRV). Further optimization of N-substituted triazolopyrimidinone derivatives revealed that the N-alkyl triazolopyrimidinone derivatives (2) had more potent antiviral activity against hRVs than compound 1. The new compounds showed improved selectivity index values, and compound 2c (KR-25210) displayed broad anti-hRV activity, with half-maximal effective concentration values ≤ 2 µM against all tested hRVs. In addition, 2c showed notable activity against other enteroviruses. Drug-likeness elucidation showed that 2c exhibited reasonable human and rat liver microsomal phase-I stability and safe CYP inhibition. Replication studies revealed that 2c is not a capsid inhibitor, and a time-of-addition assay indicated that 2c targets the virus replication stages.


Subject(s)
Enterovirus Infections , Enterovirus , Animals , Antiviral Agents/chemistry , Capsid/metabolism , Enterovirus Infections/drug therapy , Purines , Rats , Rhinovirus , Virus Replication
8.
Diagnostics (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114169

ABSTRACT

The diagnosis and prognosis of tuberculosis remains challenging and necessitates the development of a new test that can accurately diagnose and monitor treatment responses. In this regard, miRNA is becoming a potential diagnostic and prognostic biomarker which differentiates treatment respondents from non-respondents for various non-infectious and infectious diseases, including tuberculosis. The concentration of miRNAs varies based on cell type, disease, and site of infection, implicating that selection of an optimal reference gene is crucial, and determines the quantification of transcript level and biological interpretation of the data. Thus, the study evaluated the stability and expression level of five candidate miRNAs (let-7i-5p, let-7a-5p, miRNA-16-5p, miRNA-22-3p and miRNA-93-5p), including U6 Small Nuclear RNA (RNU6B) to normalize circulating miRNAs in the plasma of 68 participants (26 healthy controls, 23 latent, and 19 pulmonary tuberculosis infected) recruited from four health centers and three hospitals in Addis Ababa, Ethiopia. The expression levels of miRNAs isolated from plasma of culture confirmed newly diagnosed pulmonary tuberculosis patients were compared with latently infected and non-infected healthy controls. The qPCR data were analyzed using four independent statistical tools: Best Keeper, Genorm, Normfinder and comparative delta-Ct methods, and the data showed that miRNA-22-3p and miRNA-93-5p were suitable plasma reference miRNAs in a tuberculosis study.

9.
Diagnostics (Basel) ; 10(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962082

ABSTRACT

Tuberculosis infection exhibits different forms, namely, pulmonary, extrapulmonary, and latent. Here, diagnostic markers based on the gene expression of cytokines and chemokines for differentiating between tuberculosis infection state(s) were identified. Gene expression of seven cytokines (Interferon gamma (IFN-γ), Interferon gamma-induced protein 10 (IP-10), Interleukin-2 receptor (IL-2R), C-X-C Motif Chemokine Ligand 9 (CXCL-9), Interleukin 10 (IL-10), Interleukin 4 (IL-4), and Tumor Necrosis Factor alpha (TNF-α)) in response to tuberculosis antigen was analyzed using real-time polymerase reaction. The sensitivity and specificity of relative quantification (2^-ΔΔCt) of mRNA expression were analyzed by constructing receiver operating characteristic curves and measuring the area under the curve (AUC) values. Combinations of cytokines were analyzed using the R statistical software package. IFN-γ, IP-10, IL2R, and CXCL-9 showed high expression in latent and active tuberculosis patients (p = 0.001), with a decrease in IL10 expression, and no statistical difference in IL-4 levels among all the groups (p = 0.999). IL-10 differentiated pulmonary tuberculosis patients from latent cases with an AUC of 0.731. IL10 combined with CXCL-9 distinguished pulmonary tuberculosis patients from extrapulmonary cases with a sensitivity, specificity, and accuracy of 85.7%, 73.9%, and 81.0%, respectively. IL-10 together with IP-10 and IL-4 differentiated pulmonary tuberculosis from latent cases with a sensitivity and specificity of 77.1% and 88.1%, respectively. Decision tree analysis demonstrated that IFN-γ IL-2R, and IL-4 can diagnose tuberculosis infection with a sensitivity, specificity, and accuracy of 89.7%, 96.1%, and 92.7%, respectively. A combination of gene expression of cytokines and chemokines might serve as an effective marker to differentiate tuberculosis infection state(s).

10.
Medicina (Kaunas) ; 56(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659906

ABSTRACT

Background and objectives: Breast cancer is the most common cancer among women worldwide. Early stage diagnosis is important for predicting increases in treatment success rates and decreases in patient mortality. Recently, circulating biomarkers such as circulating tumor cells, circulating tumor DNA, exosomes, and circulating microRNAs have been examined as blood-based markers for the diagnosis of breast cancer. Although miR-202 has been studied for its function or expression in breast cancer, its potential diagnostic value in a clinical setting remains elusive and miR-202 has not been investigated in South Korea. In this study, we aimed to evaluate the diagnostic utility of miR-202 in plasma samples of breast cancer patients in South Korea. Materials and Methods: We investigated miR-202 expression in the plasma of 30 breast cancer patients during diagnosis along with 30 healthy controls in South Korea by quantitative reverse transcription PCR. Results: The results showed that circulating miR-202 levels were significantly elevated in the breast cancer patients compared with those in healthy controls (p < 0.001). The sensitivity and specificity of circulating miR-202 were 90.0% and 93.0%, respectively. Additionally, circulating miR-202 showed high positivity at early stage. The positive rate of miR-202 was as follows: 100% (10/10) for stage I, 90% (9/10) for stage II, and 80% (8/10) for stage III. miR-202 was also a predictor of a 9.6-fold high risk for breast cancer (p < 0.001). Conclusions: Additional alternative molecular biomarkers for diagnosis and management of pre-cancer patients are needed. Circulating miR-202 might be potential diagnostic tool for detecting early stage breast cancer.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/pathology , MicroRNAs/analysis , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Female , Gene Expression Profiling , Humans , MicroRNAs/blood , Middle Aged , ROC Curve , Republic of Korea , Sensitivity and Specificity
11.
Ann Lab Med ; 40(2): 142-147, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31650730

ABSTRACT

BACKGROUND: Although the incidence of tuberculosis (TB) is decreasing, cases of multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB continue to increase. As conventional phenotype drug susceptibility testing (pDST) takes six to eight weeks, molecular assays are widely used to determine drug resistance. we developed QuantaMatrix Multiplexed Assay Platform (QMAP) MDR/XDR assay (QuantaMatrix Inc., Seoul, Korea) that can simultaneously detect mutations related to both first- and second-line drug resistance (rifampin, isoniazid, ethambutol, fluoroquinolones, second-line injectable drugs, and streptomycin). METHODS: We used 190 clinical Mycobacterium tuberculosis (MTB) strains isolated from Myanmar, compared QMAP and pDST results, and determined concordance rates. Additionally, we performed sequence analyses for discordant results. RESULTS: QMAP results were 87.9% (167/190) concordant with pDST results. In the 23 isolates with discordant results, the QMAP and DNA sequencing results completely matched. CONCLUSIONS: The QMAP MDR/XDR assay can detect all known DNA mutations associated with drug resistance for both MDR- and XDR-MTB strains. It can be used for molecular diagnosis of MDR- and XDR-TB to rapidly initiate appropriate anti-TB drug therapy.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/diagnosis , Multiplex Polymerase Chain Reaction/methods , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Extensively Drug-Resistant Tuberculosis/drug therapy , Humans , Microbial Sensitivity Tests , Mutation , Myanmar , Mycobacterium tuberculosis/isolation & purification , Phenotype , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...