Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 356: 102-113, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28527958

ABSTRACT

Parkinson's disease (PD) is characterized by progressive dopamine depletion and a loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Treadmill exercise is a promising non-pharmacological approach for reducing the risk of PD and other neuroinflammatory disorders, such as Alzheimer's disease. The goal of this study was to investigate the effects of treadmill exercise on α-synuclein-induced neuroinflammation and neuronal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Eight weeks of treadmill exercise improved motor deficits and reduced α-synuclein expression, a major causative factor of PD-like symptoms, in MPTP mice. Treadmill exercise also down-regulated the expression of toll-like receptor 2 and its associated downstream signaling molecules, including myeloid differentiation factor-88, tumor necrosis factor receptor-associated factor 6, and transforming growth factor-ß-activated protein kinase 1. These effects were associated with reduced ionized calcium-binding adapter molecule 1 expression, decreased IκBα and nuclear transcription factor-κB phosphorylation, decreased tumor necrosis factor α and interleukin-1ß expression, and decreased NADPH oxidase subunit expression in the SNpc and striatum. Additionally, it promoted the expression of tyrosine hydroxylase and the dopamine transporter, as well as plasma dopamine levels, in MPTP mice; these effects were associated with decreased caspase-3 expression and cleavage, as well as increased Bcl-2 expression in the SNpc. Taken together, our data suggest that treadmill exercise improves MPTP-associated motor deficits by exerting neuroprotective effects in the SNpc and striatum, supporting the notion that treadmill exercise is useful as a non-pharmacological tool for the management of PD.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Parkinson Disease/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 2/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Male , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Parkinson Disease/pathology , Physical Conditioning, Animal , Substantia Nigra/drug effects , alpha-Synuclein/metabolism
2.
Med Sci Sports Exerc ; 49(8): 1562-1571, 2017 08.
Article in English | MEDLINE | ID: mdl-28333717

ABSTRACT

PURPOSE: Sporadic inclusion body myositis (sIBM), a muscular degenerative disease in the elderly, is an inflammatory myopathy characterized by muscle weakness in the wrist flexor, quadriceps, and tibialis anterior muscles. We aimed to identify the therapeutic effect of resistance exercise (RE) in improving sIBM symptoms in an sIBM animal model. METHODS: Six-week-old male Wistar rats were divided into a sham group (sham, n = 12), chloroquine-control group (CQ-con, n = 12), and chloroquine-RE group (CQ-RE, n = 12). The rats were subjected to 1 wk of exercise adaptation and 8 wk of exercise (three sessions per week). Protein expression was measured by Western blotting. Rimmed vacuoles (RV) were identified by hematoxylin and eosin staining and modified Gömöri trichrome staining, and amyloid deposition was examined by Congo red staining. RESULTS: The effects of CQ and RE differed depending on myofiber characteristics. Soleus muscles showed abnormal autophagy in response to CQ, which increased RV generation and amyloid-ß accumulation, resulting in atrophy. RE generated RV and decreased amyloid deposition in soleus muscles and also improved autophagy without generating hypertrophy. This reduced the atrophy signal transduction, resulting in decreased atrophy compared with the CQ-con group. Despite no direct effect of CQ, flexor hallucis longus muscles showed loss of mass because of reduced activity or increased inflammatory response; however, RE increased the hypertrophy signal, resulting in reduced autophagy and atrophy. CONCLUSIONS: These results demonstrate that RE had a preventive effect on sIBM induced by CQ treatment in an animal model. However, because the results were from an animal experiment, a more detailed study should be conducted over a longer period, and the effectiveness of different RE programs should also be investigated.


Subject(s)
Autophagy/physiology , Exercise Therapy/methods , Muscle, Skeletal/metabolism , Myositis, Inclusion Body/physiopathology , Myositis, Inclusion Body/therapy , Resistance Training , Amyloid/metabolism , Animals , Biomarkers/metabolism , Body Weight , Disease Models, Animal , Humans , Male , Muscle Proteins/metabolism , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Myositis, Inclusion Body/pathology , Organ Size , Phosphorylation , Rats, Wistar
4.
Korean J Food Sci Anim Resour ; 36(5): 635-640, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27857539

ABSTRACT

Lactobacillus acidophilus n.v. Er2 317/402 strain Narine is known as a health beneficial functional probiotic culture and supplementary source of nutrition for newborns. In this study, in vitro antimicrobial activities of Narine-lyophilized (Narine-L), Narine-heat treated (Narine-HT), and Narine crude cell-free extract (Narine-CCFE) were evaluated against pathogen Cronobacter sakazakii (C. sakazakii) in agar as well as in a reconstituted powdered infant formula (RPIF) model. Inhibition zones of 30 mg Narine-L and Narine-HT were both 150 U, whereas inhibition zone of 30 mg Narine-CCFE was 200 U. Narine-L (1 g) and Narine-HT (1 g) were added to 10 mL of artificially contaminated RPIF, respectively, containing 100 µL of C. sakazakii (1.62×108 colony forming unit (CFU)/mL). After treatment with Narine-L and Narine-HT for 3 h and 6 h at 37℃, less than ≤107 CFU/mL of C. sakazakii was detected in RPIF. Without Narine-L and Narine-HT treatment, the population of C. sakazakii increased up to 5.36×109 CFU/mL after 6 h. Examination by transmission electron microscopy confirmed C. sakazakii cells were damaged by Narine-CCFE. Thus, employing Narine culture as a natural and safe bio-preservative may protect infants from C. sakazakii.

SELECTION OF CITATIONS
SEARCH DETAIL
...