Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 119(7): 1633-1648, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069517

ABSTRACT

PURPOSE: To identify strength and performance thresholds below which task performance is impaired. METHODS: A new weighted suit system was used to manipulate strength-to-body-weight ratio during the performance of simulated space explorations tasks. Statistical models were used to evaluate various measures of muscle strength and performance on their ability to predict the probability that subjects could complete the tasks in an acceptable amount of time. Thresholds were defined as the point of greatest change in probability per change in the predictor variable. For each task, median time was used to define the boundary between "acceptable" and "unacceptable" completion times. RESULTS: Fitness thresholds for four space explorations tasks were identified using 23 physiological input variables. Area under receiver operator characteristic curves varied from a low of 0.68 to a high of 0.92. CONCLUSION: An experimental analog for altering strength-to-body weight combined with a probability-based statistical model for success was suitable for identifying thresholds for task performance below which tasks could either not be completed or time to completion was unacceptably high. These results provide data for strength recommendations for exploration mission ambulatory task performance. Furthermore, the approach can be used to identify thresholds for other areas where occupationally relevant tasks vary considerably.


Subject(s)
Muscle Strength , Physical Functional Performance , Space Suits/standards , Work Performance/standards , Adult , Female , Humans , Male , Physical Endurance , Space Suits/adverse effects
2.
J Womens Health (Larchmt) ; 23(11): 959-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25401941

ABSTRACT

Sex and gender differences have long been a research topic of interest, yet few studies have explored the specific differences in neurological responses between men and women during and after spaceflight. Knowledge in this field is limited due to the significant disproportion of sexes enrolled in the astronaut corps. Research indicates that general neurological and sensory differences exist between the sexes, such as those in laterality of amygdala activity, sensitivity and discrimination in vision processing, and neuronal cell death (apoptosis) pathways. In spaceflight, sex differences may include a higher incidence of entry and space motion sickness and of post-flight vestibular instability in female as opposed to male astronauts who flew on both short- and long-duration missions. Hearing and auditory function in crewmembers shows the expected hearing threshold differences between men and women, in which female astronauts exhibit better hearing thresholds. Longitudinal observations of hearing thresholds for crewmembers yield normal age-related decrements; however, no evidence of sex-related differences from spaceflight has been observed. The impact of sex and gender differences should be studied by making spaceflight accessible and flying more women into space. Only in this way will we know if increasingly longer-duration missions cause significantly different neurophysiological responses in men and women.


Subject(s)
Astronauts/statistics & numerical data , Health Status , Somatosensory Disorders/etiology , Space Flight , Weightlessness/adverse effects , Adaptation, Physiological , Aerospace Medicine , Female , Humans , Male , Sex Factors , Women's Health
3.
Gait Posture ; 23(3): 315-23, 2006 Apr.
Article in English | MEDLINE | ID: mdl-15961313

ABSTRACT

To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14, 0.33, 0.6 Hz) head tilts of +/- 30 degrees in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity. This instability may compound the risk of falling following recovery from balance disorders or adaptation to altered gravity conditions such as space flight. Thus, dynamic head tilts may improve the diagnostic sensitivity of computerized dynamic posturography, particularly for healthy subjects recovering from temporary balance control deficits.


Subject(s)
Head Movements/physiology , Postural Balance/physiology , Adaptation, Physiological/physiology , Adult , Female , Gravitation , Humans , Male , Middle Aged , Orientation/physiology , Posture/physiology , Signal Processing, Computer-Assisted
4.
Biomed Microdevices ; 6(3): 241-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15377834

ABSTRACT

BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.


Subject(s)
Bioreactors , Biosensing Techniques/instrumentation , Carbon Dioxide/metabolism , Cell Culture Techniques/instrumentation , Kidney/physiology , Oxygen/metabolism , Animals , Biosensing Techniques/methods , Cell Culture Techniques/methods , Cell Line , Cricetinae , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Fiber Optic Technology/instrumentation , Miniaturization , Optical Fibers , Reproducibility of Results , Sensitivity and Specificity , Systems Integration , Temperature , Thermography/instrumentation , Thermography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...