Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446149

ABSTRACT

Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.


Subject(s)
Spinal Cord Injuries , Rats , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Peripheral Nerves , Stem Cells , Spinal Cord
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614335

ABSTRACT

Bone morphogenetic protein-2 (BMP-2) is used in the treatment of degenerative spinal disease and vertebral fractures, spine fusion, dental surgery, and facial surgery. However, high doses are associated with side effects such as inflammation and osteophytes. In this study, we performed spinal fusion surgery on mini-pigs using BMP-2 and a HA/ß-TCP hydrogel carrier, and evaluated the degree of fusion and osteophyte growth according to time and dosage. Increasing the dose of BMP-2 led to a significantly higher fusion rate than was observed in the control group, and there was no significant difference between the 8-week and 16-week samples. We also found that the HA + ß-TCP hydrogel combination helped maintain the rate of BMP-2 release. In conclusion, the BMP-2-loaded HA/ß-TCP hydrogel carrier used in this study overcame the drawback of potentially causing side effects when used at high concentrations by enabling the sustained release of BMP-2. This method is also highly efficient, since it provides mineral matter to accelerate the fusion rate of the spine and improve bone quality.


Subject(s)
Bone Morphogenetic Protein 2 , Recombinant Proteins , Spinal Fusion , Animals , Humans , Bone Morphogenetic Protein 2/therapeutic use , Hydrogels , Recombinant Proteins/therapeutic use , Spinal Fusion/methods , Swine , Swine, Miniature , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...