Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(22): 35624-35631, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017729

ABSTRACT

We demonstrate the quantitative pressure measurement of gas molecules in the mid-infrared using chip-based supercontinuum and cepstrum analysis without additional measurements for baseline normalization. A supercontinuum generated in an on-chip waveguide made of chalcogenide glass having high nonlinearity passes through CO gas and provides a transmission spectrum. The gas absorption information is deconvoluted from the original supercontinuum spectral information containing temporal fluctuation by cepstrum analysis and extracted simply by applying a bandpass filter in the temporal domain. The gas pressure estimated from the extracted absorption information is consistent with the value measured by a pressure gauge within a difference of 1.25%, despite spectral fluctuations in the supercontinuum baseline comparable to the spectral depth of the gas absorption lines.

2.
Opt Lett ; 46(10): 2413-2416, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988597

ABSTRACT

We report a supercontinuum generation (SCG) in a waveguide that spontaneously forms without an etching process during the deposition of a core material on a preformed ${\rm{Si}}{{\rm{O}}_2}$ substructure. The mechanism of dispersion control for this new, to the best of our knowledge, type of waveguide is analyzed by numerical simulation, which results in a design rule to achieve a target dispersion profile by adjusting the substructure geometry. SCG is experimentally demonstrated with a waveguide made of ${\rm{A}}{{\rm{s}}_2}{{\rm{S}}_3}$, chalcogenide glass, which has low material absorption over the mid-IR range. A dispersion-controlled waveguide with a length of 10 mm pumped with 77 pJ pulses at a telecommunication wavelength of 1560 nm resulted in a supercontinuum that extends by more than 1.5 octaves.

3.
Nat Commun ; 11(1): 5933, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33230207

ABSTRACT

By providing an effective way to leverage nonlinear phenomena in integrated devices, high-Q optical resonators have led to recent advances in on-chip photonics. However, developing fabrication processes to shape any new material into a resonator with extremely smooth surfaces on a chip has been an exceptionally challenging task. Here, we describe a universal method to implement ultra-high-Q resonators with any new material having desirable properties that can be deposited by physical vapor deposition. Using this method light-guiding cores with surface roughness on the molecular-scale are created automatically on pre-patterned substrates. Its efficacy has been verified using As2S3, a chalcogenide glass that has high-nonlinearity. The Q-factor of the As2S3 resonator so-developed approached the propagation loss record achieved in chalcogenide fibers which were limited by material losses. Owing to the boosted Q-factor, lasing by stimulated Brillouin scattering has been demonstrated with 100 times lower threshold power than the previous record.

SELECTION OF CITATIONS
SEARCH DETAIL
...