Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cancer Res Commun ; 4(5): 1369-1379, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38709075

ABSTRACT

B7-H3 (CD276) is a transmembrane glycoprotein of the B7 immune checkpoint superfamily that has emerged as a promising therapeutic target. To better understand the applicability of B7-H3-directed therapies, we analyzed 156,791 samples comprising 50 cancer types to interrogate the clinical, genomic, transcriptomic, and immunologic correlates of B7-H3 mRNA expression. DNA (592-gene/whole-exome) and RNA (whole-transcriptome) sequencing was performed from samples submitted to Caris Life Sciences. B7-H3 high versus low expression was based on top and bottom quartiles for each cancer type. Patients' overall survival was determined from insurance claims data. Pathway analysis was performed using gene set enrichment analyses. Immune cell fractions were inferred using quanTIseq. B7-H3 is expressed across several human malignancies including prostate, pancreatic, ovarian, and lung cancers. High B7-H3 expression is associated with differences in overall survival, possibly indicating a prognostic role of B7-H3 for some cancers. When examining molecular features across all cancer types, we did not identify recurrent associations between B7-H3 expression and genetic alterations in TP53, RB1, and KRAS. However, we find consistent enrichment of epithelial-to-mesenchymal transition, Wnt, TGFß, and Notch signaling pathways. In addition, tumors with high B7-H3 expression are associated with greater proportions of M1 macrophages, but lower fractions of CD8+ T cells. We have begun to define the genomic, transcriptomic, clinical, and immunologic features associated with B7-H3 expression in 50 cancer types. We report novel clinical and molecular features of B7-H3-high tumors which may inform how current B7-H3 therapeutics should be deployed and prioritized. SIGNIFICANCE: B7-H3-targeting therapeutics have shown promising results in initial clinical trials. In this pan-cancer analysis of B7-H3 mRNA expression, we found that B7-H3 exhibits robust expression in many common cancer types. These results may inform further development of B7-H3-targeting therapeutics and may guide clinical decisions for patients with limited treatment options.


Subject(s)
B7 Antigens , Neoplasms , Humans , B7 Antigens/genetics , B7 Antigens/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/mortality , Neoplasms/therapy , Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Prognosis , Male , Female
2.
Article in English | MEDLINE | ID: mdl-38418892

ABSTRACT

BACKGROUND: Natural killer (NK) cells are non-antigen specific innate immune cells that can be redirected to targets of interest using multiple strategies, although none are currently FDA-approved. We sought to evaluate NK cell infiltration into tumors to develop an improved understanding of which histologies may be most amenable to NK cell-based therapies currently in the developmental pipeline. METHODS: DNA (targeted/whole-exome) and RNA (whole-transcriptome) sequencing was performed from tumors from 45 cancer types (N = 90,916 for all cancers and N = 3365 for prostate cancer) submitted to Caris Life Sciences. NK cell fractions and immune deconvolution were inferred from RNA-seq data using quanTIseq. Real-world overall survival (OS) and treatment status was determined and Kaplan-Meier estimates were calculated. Statistical significance was determined using X2 and Mann-Whitney U tests, with corrections for multiple comparisons where appropriate. RESULTS: In both a pan-tumor and prostate cancer (PCa) -specific setting, we demonstrated that NK cells represent a substantial proportion of the total cellular infiltrate (median range 2-9% for all tumors). Higher NK cell infiltration was associated with improved OS in 28 of 45 cancer types, including (PCa). NK cell infiltration was negatively correlated with common driver mutations and androgen receptor variants (AR-V7) in primary prostate biopsies, while positively correlated with negative immune regulators. Higher levels of NK cell infiltration were associated with patterns consistent with a compensatory anti-inflammatory response. CONCLUSIONS: Using the largest available dataset to date, we demonstrated that NK cells infiltrate a broad range of tumors, including both primary and metastatic PCa. NK cell infiltration is associated with improved PCa patient outcomes. This study demonstrates that NK cells are capable of trafficking to both primary and metastatic PCa and are a viable option for immunotherapy approaches moving forward. Future development of strategies to enhance tumor-infiltrating NK cell-mediated cytolytic activity and activation while limiting inhibitory pathways will be key.

3.
Mol Cancer Res ; 22(5): 452-464, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38345532

ABSTRACT

Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa. IMPLICATIONS: Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.


Subject(s)
Phosphoproteins , Proteome , Humans , Male , Proteome/metabolism , Animals , Mice , Phosphoproteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Heterografts , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Xenograft Model Antitumor Assays , Proteomics/methods
4.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352340

ABSTRACT

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition. Significance: PCa that escapes therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic PCa and implicates CDK2 inhibition as novel therapeutic target for this most lethal subtype of PCa.

6.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577653

ABSTRACT

Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.

7.
Front Endocrinol (Lausanne) ; 14: 1093332, 2023.
Article in English | MEDLINE | ID: mdl-37065756

ABSTRACT

Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.


Subject(s)
Neuroendocrine Tumors , Prostatic Neoplasms , Humans , Male , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Prostatic Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
8.
Elife ; 112022 05 12.
Article in English | MEDLINE | ID: mdl-35550030

ABSTRACT

Metastatic castration-resistant prostate cancers (mCRPCs) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ARTs). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins, we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found that CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Cell Line, Tumor , Cell Nucleus/metabolism , Cyclic AMP Response Element-Binding Protein A , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
9.
Cell Rep ; 38(8): 110417, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196489

ABSTRACT

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction
10.
Dev Cell ; 57(2): 212-227.e8, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34990589

ABSTRACT

The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colonic Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glucose Transporter Type 1/genetics , Humans , Mice , Mice, Nude , Organoids , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptional Activation , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/physiology
11.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34554931

ABSTRACT

Bladder cancer is a genetically heterogeneous disease, and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here, we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern. Genetic studies demonstrated that RAF1-amplified tumors were dependent upon RAF1 activity for survival, and RAF1-activated cell lines and patient-derived models were sensitive to available and emerging RAF inhibitors as well as combined RAF plus MEK inhibition. Furthermore, we found that bladder tumors with HRAS- or NRAS-activating mutations were dependent on RAF1-mediated signaling and were sensitive to RAF1-targeted therapy. Together, these data identified RAF1 activation as a dependency in a subset making up nearly 20% of urothelial tumors and suggested that targeting RAF1-mediated signaling represents a rational therapeutic strategy.


Subject(s)
Gene Amplification , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/genetics , Urinary Bladder Neoplasms/genetics , Animals , Cell Line, Tumor , Female , GTP Phosphohydrolases/genetics , Humans , Membrane Proteins/genetics , Mice , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Urinary Bladder Neoplasms/drug therapy
12.
Cancers (Basel) ; 13(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921650

ABSTRACT

Genetic variations in androgen metabolism may influence prostate cancer (PC) prognosis. Clinical studies consistently linked PC prognosis with four single nucleotide polymorphisms (SNPs) in the critical androgen-regulating genes: 3-beta-hydroxysteroid dehydrogenase (HSD3B1) rs1047303, 5-alpha-reductase 2 (SRD5A2) rs523349, and solute carrier organic ion (SLCO2B1) rs1789693 and rs12422149. We tested the association of four androgen-regulating SNPs, individually and combined, with PC-specific mortality in the ARIC population-based prospective cohort. Men diagnosed with PC (N = 622; 79% White, 21% Black) were followed for death (N = 350) including PC death (N = 74). Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95%CI adjusting for center, age, stage, and grade at diagnosis using separate hazards for races. A priori genetic risk score (GRS) was created as the unweighted sum of risk alleles in the four pre-selected SNPs. The gain-of-function rs1047303C allele was associated PC-specific mortality among men with metastatic PC at diagnosis (HR = 4.89 per risk allele, p = 0.01). Higher GRS was associated with PC-specific mortality (per risk allele: HR = 1.26, p = 0.03). We confirmed that the gain-of-function allele in HSD3B1 rs1047303 is associated with greater PC mortality in men with metastatic disease. Additionally, our findings suggest a cumulative effect of androgen-regulating genes on PC-specific mortality; however, further validation is required.

13.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217970

ABSTRACT

Sarcomere and cytoskeleton genes, or actomyosin genes, regulate cell biology including mechanical stress, cell motility, and cell division. While actomyosin genes are recurrently dysregulated in cancers, their oncogenic roles have not been examined in a lineage-specific fashion. In this report, we investigated dysregulation of nine sarcomeric and cytoskeletal genes across 20 cancer lineages. We found that uterine cancers harbored the highest frequencies of amplification and overexpression of the gamma actin gene, ACTG1. Each of the four subtypes of uterine cancers, mixed endometrial carcinomas, serous carcinomas, endometroid carcinomas, and carcinosarcomas harbored between 5~20% of ACTG1 gene amplification or overexpression. Clinically, patients with ACTG1 gains had a poor prognosis. ACTG1 gains showed transcriptional patterns that reflect activation of oncogenic signals, repressed response to innate immunity, or immunotherapy. Functionally, the CRISPR-CAS9 gene deletion of ACTG1 had the most robust and consistent effects in uterine cancer cells relative to 20 other lineages. Overall, we propose that ACTG1 regulates the fitness of uterine cancer cells by modulating cell-intrinsic properties and the tumor microenvironment. In summary, the ACTG1 functions relative to other actomyosin genes support the notion that it is a potential biomarker and a target gene in uterine cancer precision therapies.


Subject(s)
Actins , Biomarkers, Tumor , Gene Amplification , Neoplasm Proteins , Uterine Neoplasms , Actins/genetics , Actins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Disease-Free Survival , Female , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Survival Rate , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/mortality , Uterine Neoplasms/pathology
14.
Mol Cancer Res ; 18(8): 1176-1188, 2020 08.
Article in English | MEDLINE | ID: mdl-32461304

ABSTRACT

The increased treatment of metastatic castration-resistant prostate cancer (mCRPC) with second-generation antiandrogen therapies (ADT) has coincided with a greater incidence of lethal, aggressive variant prostate cancer (AVPC) tumors that have lost dependence on androgen receptor (AR) signaling. These AR-independent tumors may also transdifferentiate to express neuroendocrine lineage markers and are termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests kinase signaling may be an important driver of NEPC. To identify targetable kinases in NEPC, we performed global phosphoproteomics comparing several AR-independent to AR-dependent prostate cancer cell lines and identified multiple altered signaling pathways, including enrichment of RET kinase activity in the AR-independent cell lines. Clinical NEPC patient samples and NEPC patient-derived xenografts displayed upregulated RET transcript and RET pathway activity. Genetic knockdown or pharmacologic inhibition of RET kinase in multiple mouse and human models of NEPC dramatically reduced tumor growth and decreased cell viability. Our results suggest that targeting RET in NEPC tumors with high RET expression could be an effective treatment option. Currently, there are limited treatment options for patients with aggressive neuroendocrine prostate cancer and none are curative. IMPLICATIONS: Identification of aberrantly expressed RET kinase as a driver of tumor growth in multiple models of NEPC provides a significant rationale for testing the clinical application of RET inhibitors in patients with AVPC.


Subject(s)
Carcinoma, Neuroendocrine/drug therapy , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Prostatic Neoplasms/drug therapy , Proteomics/methods , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Animals , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mice , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
15.
Cancer Res ; 80(11): 2094-2100, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32127357

ABSTRACT

Alterations in DNA damage response (DDR) genes are common in advanced prostate tumors and are associated with unique genomic and clinical features. ATM is a DDR kinase that has a central role in coordinating DNA repair and cell-cycle response following DNA damage, and ATM alterations are present in approximately 5% of advanced prostate tumors. Recently, inhibitors of PARP have demonstrated activity in advanced prostate tumors harboring DDR gene alterations, particularly in tumors with BRCA1/2 alterations. However, the role of alterations in DDR genes beyond BRCA1/2 in mediating PARP inhibitor sensitivity is poorly understood. To define the role of ATM loss in prostate tumor DDR function and sensitivity to DDR-directed agents, we created a series of ATM-deficient preclinical prostate cancer models and tested the impact of ATM loss on DNA repair function and therapeutic sensitivities. ATM loss altered DDR signaling, but did not directly impact homologous recombination function. Furthermore, ATM loss did not significantly impact sensitivity to PARP inhibition but robustly sensitized to inhibitors of the related DDR kinase ATR. These results have important implications for planned and ongoing prostate cancer clinical trials and suggest that patients with tumor ATM alterations may be more likely to benefit from ATR inhibitor than PARP inhibitor therapy. SIGNIFICANCE: ATM loss occurs in a subset of prostate tumors. This study shows that deleting ATM in prostate cancer models does not significantly increase sensitivity to PARP inhibition but does sensitize to ATR inhibition.See related commentary by Setton and Powell, p. 2085.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Ataxia Telangiectasia Mutated Proteins , DNA Damage , DNA Repair , Genome , Humans , Male
16.
Cell Rep ; 29(8): 2355-2370.e6, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747605

ABSTRACT

Androgen-receptor (AR) inhibitors, including enzalutamide, are used for treatment of all metastatic castration-resistant prostate cancers (mCRPCs). However, some patients develop resistance or never respond. We find that the transcription factor CREB5 confers enzalutamide resistance in an open reading frame (ORF) expression screen and in tumor xenografts. CREB5 overexpression is essential for an enzalutamide-resistant patient-derived organoid. In AR-expressing prostate cancer cells, CREB5 interactions enhance AR activity at a subset of promoters and enhancers upon enzalutamide treatment, including MYC and genes involved in the cell cycle. In mCRPC, we found recurrent amplification and overexpression of CREB5. Our observations identify CREB5 as one mechanism that drives resistance to AR antagonists in prostate cancers.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Cyclic AMP Response Element-Binding Protein A/metabolism , Antineoplastic Agents/therapeutic use , Benzamides , Cyclic AMP Response Element-Binding Protein A/genetics , Drug Resistance, Neoplasm/genetics , Humans , Male , Nitriles , Open Reading Frames/genetics , Phenylthiohydantoin/analogs & derivatives , Promoter Regions, Genetic/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
17.
Cancer Res ; 79(9): 2404-2414, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30755442

ABSTRACT

Malignant rhabdoid tumors (MRT) are highly aggressive pediatric cancers that respond poorly to current therapies. In this study, we screened several MRT cell lines with large-scale RNAi, CRISPR-Cas9, and small-molecule libraries to identify potential drug targets specific for these cancers. We discovered MDM2 and MDM4, the canonical negative regulators of p53, as significant vulnerabilities. Using two compounds currently in clinical development, idasanutlin (MDM2-specific) and ATSP-7041 (MDM2/4-dual), we show that MRT cells were more sensitive than other p53 wild-type cancer cell lines to inhibition of MDM2 alone as well as dual inhibition of MDM2/4. These compounds caused significant upregulation of the p53 pathway in MRT cells, and sensitivity was ablated by CRISPR-Cas9-mediated inactivation of TP53. We show that loss of SMARCB1, a subunit of the SWI/SNF (BAF) complex mutated in nearly all MRTs, sensitized cells to MDM2 and MDM2/4 inhibition by enhancing p53-mediated apoptosis. Both MDM2 and MDM2/4 inhibition slowed MRT xenograft growth in vivo, with a 5-day idasanutlin pulse causing marked regression of all xenografts, including durable complete responses in 50% of mice. Together, these studies identify a genetic connection between mutations in the SWI/SNF chromatin-remodeling complex and the tumor suppressor gene TP53 and provide preclinical evidence to support the targeting of MDM2 and MDM4 in this often-fatal pediatric cancer. SIGNIFICANCE: This study identifies two targets, MDM2 and MDM4, as vulnerabilities in a deadly pediatric cancer and provides preclinical evidence that compounds inhibiting these proteins have therapeutic potential.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Rhabdoid Tumor/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
18.
Elife ; 72018 07 30.
Article in English | MEDLINE | ID: mdl-30059005

ABSTRACT

Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Filamins/genetics , Mesenchymal Stem Cells/metabolism , Animals , Base Sequence , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Exons/genetics , Female , Filamins/metabolism , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Hyaluronan Receptors/metabolism , Mice, Nude , Neoplasm Proteins/metabolism , Open Reading Frames/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Reproducibility of Results
19.
J Virol ; 90(16): 7032-7045, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27194756

ABSTRACT

UNLABELLED: Murine polyomavirus has repeatedly provided insights into tumorigenesis, revealing key control mechanisms such as tyrosine phosphorylation and phosphoinositide 3-kinase (PI3K) signaling. We recently demonstrated that polyomavirus small T antigen (ST) binds YAP, a major effector of Hippo signaling, to regulate differentiation. Here we characterize YAP as a target of middle T antigen (MT) important for transformation. Through a surface including residues R103 and D182, wild-type MT binds to the YAP WW domains. Mutation of either R103 or D182 of MT abrogates YAP binding without affecting binding to other signaling molecules or the strength of PI3K or Ras signaling. Either genetic abrogation of YAP binding to MT or silencing of YAP via short hairpin RNA (shRNA) reduced MT transformation, suggesting that YAP makes a positive contribution to the transformed phenotype. MT targets YAP both by activating signaling pathways that affect it and by binding to it. MT signaling, whether from wild-type MT or the YAP-binding MT mutant, promoted YAP phosphorylation at S127 and S381/397 (YAP2/YAP1). Consistent with the known functions of these phosphorylated serines, MT signaling leads to the loss of YAP from the nucleus and degradation. Binding of YAP to MT brings it together with protein phosphatase 2A (PP2A), leading to the dephosphorylation of YAP in the MT complex. It also leads to the enrichment of YAP in membranes. Taken together, these results indicate that YAP promotes MT transformation via mechanisms that may depart from YAP's canonical oncogenic transcriptional activation functions. IMPORTANCE: The highly conserved Hippo/YAP pathway is important for tissue development and homeostasis. Increasingly, changes in this pathway are being associated with cancer. Middle T antigen (MT) is the primary polyomavirus oncogene responsible for tumor formation. In this study, we show that MT signaling promotes YAP phosphorylation, loss from the nucleus, and increased turnover. Notably, MT genetics demonstrate that YAP binding to MT is important for transformation. Because MT also binds PP2A, YAP bound to MT is dephosphorylated, stabilized, and localized to membranes. Taken together, these results indicate that YAP promotes MT transformation via mechanisms that depart from YAP's canonical oncogenic transcriptional activation functions.


Subject(s)
Antigens, Polyomavirus Transforming/metabolism , Cell Transformation, Viral , Nuclear Proteins/metabolism , Polyomavirus Infections/immunology , Polyomavirus/immunology , Transcription Factors/metabolism , Tumor Virus Infections/immunology , Animals , Antigens, Polyomavirus Transforming/genetics , Blotting, Western , Cell Cycle Proteins , Cell Differentiation , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/virology , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Mice , Mutation/genetics , NIH 3T3 Cells , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Polyomavirus Infections/metabolism , Polyomavirus Infections/virology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factors/genetics , Tumor Virus Infections/metabolism , Tumor Virus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...