Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Heliyon ; 10(3): e25000, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317967

ABSTRACT

Automated Vehicles (AVs) based on a collection of advanced technologies such as big data and artificial intelligence have opened an opportunity to reduce traffic accidents caused by human drivers. Nevertheless, traffic accidents of AVs continue to occur, which raises safety and reliability concerns about AVs. AVs are particularly vulnerable to accidents on urban roads than on highways due to various dynamic objects and more complex infrastructure. Several studies proposed a scenario-based approach of experimenting with the response of AVs to specific situations as a way to test their safety. Reliable and concrete scenarios are necessary to test AV safety under critical conditions accurately. This study aims to derive a typical accident scenario for evaluating the safety of AVs, specifically in urban areas, by analysing collisions reported by the DMV of California, USA. We applied a hierarchical clustering method to find groups of similar reports and then executed association rule mining on each cluster to correlate between accident factors and collision types. We combined statistically significant association rules to constitute a total of 14 scenarios that are described according to an adapted PEGASUS framework. The newly obtained scenarios exhibit significantly different accident patterns than the typical Human-driven Vehicles (HVs) in urban areas reported by National Highway Traffic Safety Administration. Our discovery urges AV safety to be tested reliably under scenarios more relevant than the existing HV accident scenarios.

2.
Accid Anal Prev ; 195: 107422, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064940

ABSTRACT

Safety assessment is an active research subject for autonomous vehicles (AVs) that have emerged as a new mode of mobility. In particular, scenario-based safety assessments have garnered significant attention. AVs can be tested on how they safely avoid hypothetical situations leading to accidents. However, scenarios written by humans based on their expert knowledge and experience may only partially reflect real-world situations. Instead, we are keen on a different technique of extracting statistically significant and more detailed scenarios from sensor data captured during the critical moments when AVs become vulnerable to potential accidents. Specifically, we first render the three-dimensional space around an AV with fixed-sized voxels. Then, we modeled the aggregate kinetics of the objects in each voxel detected by 3D-LiDAR sensors mounted on real test AVs. The Vision Transformer we used to model the kinetics helped us quickly pinpoint critical voxels containing objects that threatened the AV's safety. We traced the trajectory of the critical voxels on a visual attention map to describe in detail how AVs become vulnerable to accidents according to the logical scenario format defined by the PEGASUS Project. We tested our novel method with 250 h of 3D-LiDAR recordings capturing critical moments. We devised an inference model that detected critical situations with an F1-score of 98.26%. For each type of scenario, our model consistently identified the critical objects and their tendency to influence AVs. Given the evaluation results, we can ensure that our data-driven approach yields an AV safety assessment scenario with high representativeness, coverage, expansion, and computational feasibility.


Subject(s)
Accidents, Traffic , Automobile Driving , Humans , Accidents, Traffic/prevention & control , Learning , Autonomous Vehicles , Kinetics , Knowledge , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...