Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 29(4): 563-573, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27070703

ABSTRACT

Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Molecular Targeted Therapy , Neoplasm Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Proteomics/methods , Single-Cell Analysis/methods , Adaptation, Physiological , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Butadienes/administration & dosage , Dasatinib/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/physiology , Gene Expression Profiling , Genes, erbB-1 , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Models, Biological , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/physiology , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Nitriles/administration & dosage , Pyrazines/administration & dosage , Selection, Genetic , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Xenograft Model Antitumor Assays
2.
Science ; 343(6166): 72-6, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24310612

ABSTRACT

Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Glioblastoma/drug therapy , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Central Nervous System Neoplasms/genetics , DNA/genetics , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride , Glioblastoma/genetics , Humans , Mice , Mutation , Neoplasm Transplantation , Quinazolines/therapeutic use , Single-Cell Analysis , Tumor Cells, Cultured , Withholding Treatment
3.
J Nucl Med ; 54(10): 1820-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23978446

ABSTRACT

UNLABELLED: We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. METHODS: A portable in vitro molecular imaging system comprising a microchip and a ß-particle imaging camera permitted routine cell-based radioassays of small numbers of either suspended or adherent cells. We investigated the kinetics of responses of model lymphoma and glioblastoma cancer cell lines to (18)F-FDG uptake after drug exposure. Those responses were correlated with kinetic changes in the cell cycle or with changes in receptor tyrosine kinase signaling. RESULTS: The platform enabled direct radioassays of multiple cell types and yielded results comparable to those from conventional approaches; however, the platform used smaller sample sizes, permitted a higher level of quantitation, and did not require cell lysis. CONCLUSION: The kinetic analysis enabled by the platform provided a rapid (≈ 1 h) drug screening assay.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Miniaturization/instrumentation , Molecular Imaging/instrumentation , Systems Integration , Biological Transport/drug effects , Cell Line, Tumor , Fluorodeoxyglucose F18/metabolism , Glycolysis/drug effects , Humans , Kinetics
4.
Rev Sci Instrum ; 82(9): 094301, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974603

ABSTRACT

Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Proteins/genetics , Proteins/metabolism , Robotics/instrumentation , Single-Cell Analysis/instrumentation , Automation , Cell Line , Humans , Macrophages/metabolism , Software
5.
Phys Chem Chem Phys ; 13(39): 17785-90, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21892475

ABSTRACT

Intermolecular interaction plays a crucial role in electron solvation in the condensed phase. Here, we present a femtosecond time-resolved and angle-resolved 2-photon photoemission (2PPE) study on the dynamics of electron solvation in a 2-dimensional ammonia film on a metal substrate. While the weakly chemisorbed first monolayer (ML) supports delocalized image-potential (IP) states that resemble those of the bare Ag(111) substrate, an additional monolayer localizes the IP state with a larger binding energy obtained through a pre-solvation process. Structural disorder in the metastable ammonia films (>2 ML) leads to a prominent photoelectron peak that is attributed to the long-lived trapped electron state (e(T)) located at 1.5 eV above the Fermi level. Photoinduced crystallization of the metastable phase, verified by the recovery of a delocalized IP state, is suggested to result from inelastic scattering between interfacial electrons and disordered ammonia molecules.


Subject(s)
Ammonia/chemistry , Electrons , Membranes, Artificial , Silver/chemistry , Crystallization , Photoelectron Spectroscopy , Quantum Theory , Solubility , Time Factors
7.
Biophys J ; 100(10): 2378-86, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21575571

ABSTRACT

Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network.


Subject(s)
Information Theory , Macrophages/metabolism , Signal Transduction , Antibodies, Neutralizing/metabolism , Cell Line , Colony-Forming Units Assay , Humans , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Models, Biological , Protein Binding/drug effects , Signal Transduction/drug effects
8.
J Am Chem Soc ; 131(28): 9695-703, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19552409

ABSTRACT

The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.


Subject(s)
Cell Separation/methods , Cytological Techniques/methods , DNA, Single-Stranded/metabolism , Histocompatibility Antigens/immunology , Protein Array Analysis/methods , T-Lymphocytes/immunology , Animals , Base Sequence , Cell Line , DNA Restriction Enzymes/metabolism , DNA, Complementary/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Glass/chemistry , Histocompatibility Antigens/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immobilized Proteins/metabolism , Mice , Nucleic Acid Hybridization , Protein Multimerization , Protein Structure, Quaternary , Receptors, Antigen, T-Cell/metabolism , Reproducibility of Results , Streptavidin/chemistry , Streptavidin/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...