Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 12853-12864, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427782

ABSTRACT

The asymmetric monochlorination strategy not only effectively addresses the steric issues in conventional dichlorination but also enables the development of promising acceptor units and semiregioregular polymers. Herein, monochlorinated isoindigo (1CIID) is successfully designed and synthesized by selectively introducing single chlorine (Cl) atoms. Furthermore, the 1CIID copolymerizes with two donor counterparts, centrosymmetric 2,2'-bithiophene (2T) and axisymmetric 4,7-di(thiophen-2-yl)benzo[1,2,5]thiadiazole (DTBT), forming two polymers, P1CIID-2T and P1CIID-DTBT. These polymers exhibit notable differences in backbone linearity and dipole moments, influenced by the symmetry of their donor counterparts. In particular, P1CIID-2T, which contains a centrosymmetric 2T unit, demonstrates a linear backbone and a significant dipole moment of 10.20 D. These properties contribute to the favorable film morphology of P1CIID-2T, characterized by highly ordered crystallinity in the presence of fifth-order (500) X-ray diffraction peaks. Notably, P1CIID-2T exhibits a significant improvement in molecular alignment under dynamic force, resulting in over 8-fold improvement in the performance of organic field-effect transistor (OFET) devices, with superior electron mobility up to 1.22 cm2 V-1 s-1. This study represents the first synthesis of asymmetric monochlorinated isoindigo-based conjugated polymers, highlighting the potential of asymmetric monochlorination for developing n-type semiconducting polymers. Moreover, our findings provide valuable insights into the relationship between the molecular structure and properties.

2.
ACS Appl Mater Interfaces ; 12(32): 36417-36427, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32631042

ABSTRACT

The morphology of conjugated polymer thin films, determined by the kinetics of film drying, is closely correlated with their electrical properties. Herein, we focused on dramatic changes in the thin-film morphology of blade-coated poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} caused by the effect of solvent and coating temperature. Through in situ measurements, the evolution of polymer aggregates and crystallites, which plays a decisive role in the formation of the charge-transport pathway, was observed in real time. By combining in situ ultraviolet-visible spectroscopy and in situ grazing-incidence wide-angle X-ray scattering analysis, we could identify five distinct stages during the blade-coating process; these stages were observed irrespective of the solvent and coating temperature used. The five stages are described in detail with a proposed model of film formation. This insight is an important step in understanding the relationship between the morphology of thin polymer films and their charge-transport properties as well as in optimizing the structural evolution of thin films.

3.
ACS Appl Mater Interfaces ; 12(22): 25066-25074, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32297509

ABSTRACT

Organic photosensitizers have been investigated as effective light-sensing elements that can promote strong absorption with high field-effect mobility in organic phototransistors (OPTs). In this study, a novel organic photosensitizer is synthesized to demonstrate broad-band photoresponse with enhanced electrical performance. An unsymmetrical small molecule of a solubilizing donor (Dsol)-acceptor (A)-dye donor (Ddye) type connected with a twisted conjugation system is designed for broad-band detection (ranging from 250 to 700 nm). This molecule has high solubility, thereby facilitating the formation of uniformly dispersed nanoparticles in an insulating polymer matrix, which is deposited on top of OPT semiconductors by a simple solution process. The broad-band photodetection shown by the organic photosensitizer is realized with improved mobility close to an order of magnitude and high on/off current ratio (∼105) of the organic semiconductor. Furthermore, p-type charge transport behavior in the channel of the OPT is enhanced through the intrinsic electron-accepting ability of the organic photosensitizer caused by the unique molecular configuration. These structural properties of organic photosensitizers contribute to an improvement in broad-band photosensing systems with new optoelectronic properties and functionalities.

4.
Macromol Rapid Commun ; 39(23): e1800431, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30118156

ABSTRACT

Newly synthesized donor-acceptor (D-A) type of conjugated copolymer (PCTV-BTzF) with semi-fluorinated alkyl side chains, which has good solubility in common organic solvents, is described. Unlike polymers with hydrocarbon-based alkyl side chains, semi-fluorocabonated polymer leads to intriguing results. First, the self-organization behavior of the semi-fluoroalkyl side chains by the self-aggregate propensity between hydrocarbon and fluorocarbon induces patterned microstructural morphology in polymer films; second, it dominates the molecular orientation of polymers with planar back structure. Such unusual properties of the polymer with semi-fluoroalkyl side chains compared to that with the hydrocarbon ones are verified and characterized though various systematic characterizations, including temperature-dependent UV-Vis absorption spectroscopy, atomic force microscopy, and 2D-grazing incident X-ray diffraction measurement. As a result, PCTV-BTzF-based OFETs show the maximum p-type field-effect mobility of 1.02 cm2  V-1  s-1 in the 200 °C annealed films.


Subject(s)
Furans/chemistry , Hydrocarbons, Fluorinated/chemistry , Polymers/chemistry , Molecular Structure , Particle Size , Polymers/chemical synthesis , Solubility , Surface Properties
5.
Adv Mater ; 30(22): e1706557, 2018 May.
Article in English | MEDLINE | ID: mdl-29682827

ABSTRACT

Two novel conjugated polymers incorporating quinoidal thiophene are successfully synthesized. By combining 1D nuclear magnetic resonance (NMR) and 2D nuclear Overhauser effect spectroscopy analyses, the isomeric form of the major quinoid monomer is clearly identified as the asymmetric Z, E-configuration. The quinoidal polymers are synthesized via Stille polymerization with thiophene or bithiophene. Both quinoidal polymers exhibit the low band gap of 1.45 eV and amphoteric redox behavior, indicating extended conjugation owing to the quinoidal backbone. These quinoidal polymers show ambipolar behaviors with high charge carrier mobilities when applied in organic field-effect transistors. In addition, the radial alignment of polymer chains achieved by off-center spin-coating leads to further improvement of device performance, with poly(quinoidal thiophene-bithiophene) exhibiting a high hole mobility of 8.09 cm2 V-1 s-1 , which is the highest value among the quinoidal polymers up to now. Microstructural alteration via thermal annealing or off-center spin-coating is found to beneficially affect charge transport. The enhancement of crystallinity with strong π-π interactions and the nanofibrillar structure arising from planar well-delocalized quinoid units is considered to be responsible for the high charge carrier mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...