Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1389082, 2024.
Article in English | MEDLINE | ID: mdl-38863549

ABSTRACT

The root systems of Brassica species are complex. Eight root system architecture (RSA) traits, including total root length, total root surface area, root average diameter, number of tips, total primary root length, total lateral root length, total tertiary root length, and basal link length, were phenotyped across 379 accessions representing six Brassica species (B. napus, B. juncea, B. carinata, B. oleracea, B. nigra, and B. rapa) using a semi-hydroponic system and image analysis software. The results suggest that, among the assessed species, B. napus and B. oleracea had the most intricate and largest root systems, while B. nigra exhibited the smallest roots. The two species B. juncea and B. carinata shared comparable root system complexity and had root systems with larger root diameters. In addition, 313 of the Brassica accessions were genotyped using a 19K Brassica single nucleotide polymorphism (SNP) array. After filtering by TASSEL 5.0, 6,213 SNP markers, comprising 5,103 markers on the A-genome (covering 302,504 kb) and 1,110 markers on the C-genome (covering 452,764 kb), were selected for genome-wide association studies (GWAS). Two general linear models were tested to identify the genomic regions and SNPs associated with the RSA traits. GWAS identified 79 significant SNP markers associated with the eight RSA traits investigated. These markers were distributed across the 18 chromosomes of B. napus, except for chromosome C06. Sixty-five markers were located on the A-genome, and 14 on the C-genome. Furthermore, the major marker-trait associations (MTAs)/quantitative trait loci (QTLs) associated with root traits were located on chromosomes A02, A03, and A06. Brassica accessions with distinct RSA traits were identified, which could hold functional, adaptive, evolutionary, environmental, pathological, and breeding significance.

2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731814

ABSTRACT

In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.


Subject(s)
Brassica napus , Disease Resistance , Plant Breeding , Plant Diseases , Plasmodiophorida , Quantitative Trait Loci , Brassica napus/genetics , Brassica napus/parasitology , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Plasmodiophorida/physiology , Plasmodiophorida/pathogenicity , RNA-Seq , Chromosome Mapping , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics
3.
J Fungi (Basel) ; 10(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786658

ABSTRACT

Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. acuminatum. This study aimed to determine their pathogenicity, assess host resistance, and evaluate the genetic diversity of Fusarium spp. isolated from Canada. The pathogenicity of these species was tested on two soybean cultivars, 'Akras' (moderately resistant) and 'B150Y1' (susceptible), under greenhouse conditions. The aggressiveness of the fungal isolates varied, with root rot severities ranging from 1.5 to 3.3 on a 0-4 scale. Subsequently, the six species were used to screen a panel of 20 Canadian soybean cultivars for resistance in a greenhouse. Cluster and principal component analyses were conducted based on the same traits used in the pathogenicity study. Two cultivars, 'P15T46R2' and 'B150Y1', were consistently found to be tolerant to F. oxysporum, F. redolens, F. graminearum, and F. solani. To investigate the incidence and prevalence of Fusarium spp. in Canada, fungi were isolated from 106 soybean fields surveyed across Manitoba, Saskatchewan, Ontario, and Quebec. Eighty-three Fusarium isolates were evaluated based on morphology and with multiple PCR primers, and phylogenetic analyses indicated their diversity across the major soybean production regions of Canada. Overall, this study contributes valuable insights into host resistance and the pathogenicity and genetic diversity of Fusarium spp. in Canadian soybean fields.

4.
Pathogens ; 13(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38787258

ABSTRACT

Fusarium proliferatum is associated with the root rot of many plant species, but knowledge of its impact on western Canadian field crops is limited. This study assessed the host range of this fungus and its effect on plant emergence, plant height, and shoot and root dry weights in repeated greenhouse experiments with wheat, barley, faba beans, peas, lentils, canola, lupine, and soybeans. Infection was confirmed via PCR, and principal component analysis determined the utility of different parameters in assessing host responses. All crops were at least partly susceptible, developing mild to severe disease at the seedling and adult stages, and showing significant reductions in growth. In general, the barley and wheat demonstrated higher tolerances to infection, followed by the faba bean and the pea. The soybean, canola, lupine, and lentil were most susceptible. The canola and the soybean were particularly vulnerable to F. proliferatum at the pre-emergence stage, while infection greatly reduced the lentil's biomass. Reductions in the barley's emergence and other growth parameters, however, occurred only under a high inoculum concentration. Variability in root rot severity among cultivars of the same crop indicated some diversity in host reactions within species. Nonetheless, the absence of fully-resistant crops may pose challenges in managing F. proliferatum in western Canadian cropping systems.

5.
Genes (Basel) ; 15(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38540333

ABSTRACT

The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.


Subject(s)
Brassica rapa , Brassica , Plasmodiophorida , Brassica rapa/genetics , Plasmodiophorida/genetics , Plant Breeding , Brassica/genetics , Quantitative Trait Loci
6.
Front Genet ; 14: 1231027, 2023.
Article in English | MEDLINE | ID: mdl-37946749

ABSTRACT

Background: Tunisia harbors a rich collection of unexploited durum wheat landraces (Triticum durum ssp. durum) that have been gradually replaced by elite cultivars since the 1970s. These landraces represent an important potential source for broadening the genetic background of elite durum wheat cultivars and for the introgression of novel genes for key traits, including disease resistance, into these cultivars. Methods: In this study, single nucleotide polymorphism (SNP) markers were used to investigate the genetic diversity and population structure of a core collection of 235 durum wheat accessions consisting mainly of landraces. The high phenotypic and genetic diversity of the fungal pathogen Pyrenophora tritici-repentis (cause of tan spot disease of wheat) in Tunisia allowed the assessment of the accessions for tan spot resistance at the adult plant stage under field conditions over three cropping seasons. A genome-wide association study (GWAS) was performed using a 90k SNP array. Results: Bayesian population structure analysis with 9191 polymorphic SNP markers classified the accessions into two groups, where groups 1 and 2 included 49.79% and 31.49% of the accessions, respectively, while the remaining 18.72% were admixtures. Principal coordinate analysis, the unweighted pair group method with arithmetic mean and the neighbor-joining method clustered the accessions into three to five groups. Analysis of molecular variance indicated that 76% of the genetic variation was among individuals and 23% was between individuals. Genome-wide association analyses identified 26 SNPs associated with tan spot resistance and explained between 8.1% to 20.2% of the phenotypic variation. The SNPs were located on chromosomes 1B (1 SNP), 2B (4 SNPs), 3A (2 SNPs), 3B (2 SNPs), 4A (2 SNPs), 4B (1 SNP), 5A (2 SNPs), 5B (4 SNPs), 6A (5 SNPs), 6B (2 SNPs), and 7B (1 SNP). Four markers, one on each of chromosomes 1B, and 5A, and two on 5B, coincided with previously reported SNPs for tan spot resistance, while the remaining SNPs were either novel markers or closely related to previously reported SNPs. Eight durum wheat accessions were identified as possible novel sources of tan spot resistance that could be introgressed into elite cultivars. Conclusion: The results highlighted the significance of chromosomes 2B, 5B, and 6A as genomic regions associated with tan spot resistance.

7.
Plants (Basel) ; 12(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687267

ABSTRACT

Multiple species of Fusarium can contribute to the development of root rot in canola (Brassica napus), making disease management difficult. We conducted field and greenhouse experiments to investigate the impacts of Fusarium avenaceum and Fusarium proliferatum, and the interaction between Fusarium oxysporum and F. proliferatum on root rot severity and canola yields. Inoculation with any of the three Fusarium spp. resulted in significant disease severity and reduced seedling emergence compared with non-inoculated controls, leading to yield reductions of up to 35%. Notably, there was a strong correlation (r = 0.93) between root rot severity at the seedling stage and at maturity. Regression analysis indicated a linear decline in seedling emergence with increasing disease severity. Furthermore, disease severity at maturity adversely affected the pod number per plant and the seed weight per plant, with both parameters ultimately approaching zero at a severity of 4.0 on a 0-4 scale. Co-inoculation with F. oxysporum and F. proliferatum induced more severe root rot than inoculation with each species on its own, suggesting synergistic interactions between these fungi. Knowledge of these interactions and the relative virulence of Fusarium spp. will contribute to the improved management of root rot in canola.

8.
Plants (Basel) ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631111

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied physiological changes in two Brassica napus cultivars, including plant hormone profiles-salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), the auxin indole-3-acetic acid (IAA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-along with their selected derivatives following inoculation with virulent and avirulent P. brassicae pathotypes. In susceptible plants, water uptake declined from the initial appearance of root galls by 21 days after inoculation, but did not have a significant effect on photosynthetic rate, stomatal conductance, or leaf chlorophyll levels. Nonetheless, a strong increase in ABA levels indicated that hormonal mechanisms were triggered to cope with water stress due to the declining water uptake. The free SA level in the roots increased strongly in resistant interactions, compared with a relatively minor increase during susceptible interactions. The ratio of conjugated SA to free SA was higher in susceptible interactions, indicating that resistant interactions are linked to the plant's ability to maintain higher levels of bioactive free SA. In contrast, JA and its biologically active form JA-Ile declined up to 7-fold in susceptible interactions, while they were maintained during resistant interactions. The ACC level increased in the roots of inoculated plants by 21 days, irrespective of clubroot susceptibility, indicating a role of ethylene in response to pathogen interactions that is independent of disease severity. IAA levels at early and later infection stages were lower only in susceptible plants, suggesting a modulation of auxin homeostasis by the pathogen relative to the host defense system.

9.
Plants (Basel) ; 12(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771519

ABSTRACT

Blackleg, caused by Leptosphaeria maculans, is an important disease of canola (Brassica napus). The pathogen can attack stems, leaves and pods, but basal stem cankers are most damaging and can result in significant yield losses. In Canada, Verticillium stripe (Verticillium longisporum) has recently emerged as another disease threat to canola. Symptoms of Verticillium stripe can resemble those of blackleg, and the two diseases may occur together. The effect of blackleg on yield was explored in field experiments with two canola hybrids and by evaluating a wider variety of hybrids in commercial crops in central Alberta, Canada. The impact on yield of L. maculans/V. longisporum interactions was also assessed under field and greenhouse conditions. In most hybrids, the relationship between blackleg severity and yield components was best explained by second-degree quadratic equations, although a linear relationship was found for one variety sampled in commercial fields. When L. maculans was co-inoculated with V. longisporum, blackleg severity and yield losses increased. In some cases, Verticillium stripe caused greater yield losses than blackleg. The results suggest that the interaction between L. maculans/V. longisporum may cause more severe losses in canola, highlighting the need for proactive disease management strategies.

10.
Plants (Basel) ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202335

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus). Amisulbrom, a quinone inside inhibitor (QiI), was evaluated for its effectiveness in clubroot management in Alberta, Canada. Resting spores of P. brassicae were treated in vitro with 0, 0.01, 0.1, 1, and 10% (w/v) amisulbrom to determine its effect on spore germination and viability. Amisulbrom inhibited resting spore germination by up to 79% and reduced viable spores by 31% relative to the control. Applications of a liquid solution (AL1000, 1000 g active ingredient (ai) ha-1) and granular formulations (AF700, 700 g ai ha-1; AF1000, 1000 g ai ha-1; AF1500, 1500 g ai ha-1) of amisulbrom were tested on the canola cultivars '45H31' (clubroot-susceptible) and 'CS2000' (moderately resistant) under greenhouse conditions and in field experiments in 2019 and 2020. In the greenhouse, the treatments were evaluated at inoculum concentrations of 1 × 105 or 1 × 107 resting spores g-1 soil. A trend of decreasing clubroot severity with an increasing amisulbrom rate was observed. At the lower spore concentration, treatment with AF1500 resulted in a clubroot disease severity index (DSI) <20% for both cultivars, while the lowest DSI under both low and high spore concentrations was obtained with AL1000. The field results indicated a significant reduction in DSI, with varied effects of rates and liquid vs. granular formulations. The greatest reductions (up to 58.3%) in DSI were obtained with AF1500 and AL1000 in 2020. These findings suggest that amisulbrom holds promise as part of an integrated clubroot management approach.

11.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555223

ABSTRACT

Clubroot, caused by the soilborne pathogen Plasmodiophora brassicae, is an important disease of canola (Brassica napus) and other crucifers. The recent application of RNA sequencing (RNA-seq) technologies to study P. brassicae−host interactions has generated large amounts of gene expression data, improving knowledge of the molecular mechanisms of pathogenesis and host resistance. Quantitative PCR (qPCR) analysis has been widely applied to examine the expression of a limited number of genes and to validate the results of RNA-seq studies, but may not be ideal for analyzing larger suites of target genes or increased sample numbers. Moreover, the need for intermediate steps such as cDNA synthesis may introduce variability that could affect the accuracy of the data generated by qPCR. Here, we report the validation of gene expression data from a previous RNA-seq study of clubroot using the NanoString nCounter System, which achieves efficient gene expression quantification in a fast and simple manner. We first confirm the robustness of the NanoString system by comparing the results with those generated by qPCR and RNA-seq and then discuss the importance of some candidate genes for resistance or susceptibility to P. brassicae in the host. The results show that the expression of genes measured using NanoString have a high correlation with the values obtained using the other two technologies, with R > 0.90 and p < 0.01, and the same expression patterns for most genes. The three methods (qPCR, RNA-seq, and NanoString) were also compared in terms of laboratory procedures, time, and cost. We propose that the NanoString nCounter System is a robust, sensitive, highly reproducible, and simple technology for gene expression analysis. NanoString could become a common alternative to qPCR to validate RNA-seq data or to create panels of genes for use as markers of resistance/susceptibility when plants are challenged with different P. brassicae pathotypes.


Subject(s)
Brassica napus , Plasmodiophorida , Plasmodiophorida/genetics , Brassica napus/genetics , Gene Expression Profiling , Sequence Analysis, RNA , Plant Diseases/genetics
12.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077139

ABSTRACT

Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.


Subject(s)
Aphanomyces , Aphanomyces/genetics , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Breeding , Plant Diseases/genetics , Quantitative Trait Loci
13.
Front Plant Sci ; 13: 799142, 2022.
Article in English | MEDLINE | ID: mdl-35251078

ABSTRACT

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases of canola (Brassica napus) in Canada. The identification of novel genes that contribute to clubroot resistance is important for the sustainable management of clubroot, as these genes may be used in the development of resistant canola cultivars. Phospholipase As (PLAs) play important roles in plant defense signaling and stress tolerance, and thus are attractive targets for crop breeding. However, since canola is an allopolyploid and has multiple copies of each PLA gene, it is time-consuming to test the functions of PLAs directly in this crop. In contrast, the model plant Arabidopsis thaliana has a simpler genetic background and only one copy of each PLA. Therefore, it would be reasonable and faster to validate the potential utility of PLA genes in Arabidopsis first. In this study, we identified seven homozygous atpla knockout/knockdown mutants of Arabidopsis, and tested their performance following inoculation with P. brassicae. Four mutants (pla1-iiα, pla1-iγ3, pla1-iii, ppla-iiiß, ppla-iiiδ) developed more severe clubroot than the wild-type, suggesting increased susceptibility to P. brassicae. The homologs of these Arabidopsis PLAs (AtPLAs) in B. napus (BnPLAs) were identified through Blast searches and phylogenic analysis. Expression of the BnPLAs was subsequently examined in transcriptomic datasets generated from canola infected by P. brassicae, and promising candidates for further characterization identified.

14.
Front Microbiol ; 12: 742268, 2021.
Article in English | MEDLINE | ID: mdl-34803960

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of canola (Brassica napus) in Canada. Disease management relies heavily on planting clubroot resistant (CR) cultivars, but in recent years, new resistance-breaking pathotypes of P. brassicae have emerged. Current efforts against the disease are concentrated in developing host resistance using traditional genetic breeding, omics and molecular biology. However, because of its obligate biotrophic nature, limited resources have been dedicated to investigating molecular mechanisms of pathogenic infection. We previously performed a transcriptomic study with the cultivar resistance-breaking pathotype 5X on two B. napus hosts presenting contrasting resistance/susceptibility, where we evaluated the mechanisms of host response. Since cultivar-pathotype interactions are very specific, and pathotype 5X is one of the most relevant resistance-breaking pathotypes in Canada, in this study, we analyze the expression of genes encoding putative secreted proteins from this pathotype, predicted using a bioinformatics pipeline, protein modeling and orthologous comparisons with effectors from other pathosystems. While host responses were found to differ markedly in our previous study, many common effectors are found in the pathogen while infecting both hosts, and the gene response among biological pathogen replicates seems more consistent in the effectors associated with the susceptible interaction, especially at 21 days after inoculation. The predicted effectors indicate the predominance of proteins with interacting domains (e.g., ankyrin), and genes bearing kinase and NUDIX domains, but also proteins with protective action against reactive oxygen species from the host. Many of these genes confirm previous predictions from other clubroot studies. A benzoic acid/SA methyltransferase (BSMT), which methylates SA to render it inactive, showed high levels of expression in the interactions with both hosts. Interestingly, our data indicate that E3 ubiquitin proteasome elements are also potentially involved in pathogenesis. Finally, a gene with similarity to indole-3-acetaldehyde dehydrogenase is a promising candidate effector because of its involvement in indole acetic acid synthesis, since auxin is one of the major players in clubroot development.

15.
Sci Rep ; 11(1): 14472, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262060

ABSTRACT

In this study, clubroot resistance in the resynthesized European winter Brassica napus cv. 'Tosca' was introgressed into a Canadian spring canola line '11SR0099', which was then crossed with the clubroot susceptible spring line '12DH0001' to produce F1 seeds. The F1 plants were used to develop a doubled haploid (DH) mapping population. The parents and the DH lines were screened against 'old' pathotypes 2F, 3H, 5I, 6M and 8N of the clubroot pathogen, Plasmodiophora brassicae, as well as against the 'new' pathotypes 5X, 5L, 2B, 3A, 3D, 5G, 8E, 5C, 8J, 5K, 3O and 8P. Genotyping was conducted using a Brassica 15K SNP array. The clubroot screening showed that 'Tosca, '11SR0099' and the resistant DH lines were resistant to three (2F, 3H and 5I) of the five 'old' pathotypes and four (2B, 3O, 8E and 8P) of the 12 'new' pathotypes, while being moderately resistant to the 'old' pathotype 8N and the 'new' pathotypes 3D and 5G. 'Tosca' was susceptible to isolates representing pathotype 3A (the most common among the 'new' pathotypes) as well as pathotypes 6M, 5X, 5L, 5K and 8J. Linkage analysis and QTL mapping identified a ca. 0.88-0.95 Mb genomic region on the A03 chromosome of 'Tosca' as conferring resistance to pathotypes 2F, 3H, 5I, 2B, 3D, 5G, 8E, 3O and 8P. The identified QTL genomic region housed the CRk, Crr3 and CRd gene(s). However, the susceptibility of 'Tosca' to most of the common virulent pathotypes makes it unattractive as a sole CR donor in the breeding of commercial canola varieties in western Canada.


Subject(s)
Brassica napus/genetics , Brassica napus/microbiology , Plant Diseases/microbiology , Plasmodiophorida/pathogenicity , Alberta , Disease Resistance/genetics , Genetic Linkage , Haploidy , Plant Breeding , Plant Diseases/genetics , Plasmodiophorida/isolation & purification , Polymorphism, Single Nucleotide , Quantitative Trait Loci
16.
Theor Appl Genet ; 134(9): 2965-2990, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34129066

ABSTRACT

KEY MESSAGE: A stable and major QTL, which mapped to an approximately 20.0 cM region on pea chromosome 4, was identified as the most consistent region conferring partial resistance to Aphanomyces euteiches. Aphanomyces root rot (ARR), caused by Aphanomyces euteiches Drechs., is a destructive soilborne disease of field pea (Pisum Sativum L.). No completely resistant pea germplasm is available, and current ARR management strategies rely on partial resistance and fungicidal seed treatments. In this study, an F8 recombinant inbred line population of 135 individuals from the cross 'Reward' (susceptible) × '00-2067' (tolerant) was evaluated for reaction to ARR under greenhouse conditions with the A. euteiches isolate Ae-MDCR1 and over 2 years in a field nursery in Morden, Manitoba. Root rot severity, foliar weight, plant vigor and height were used as estimates of tolerance to ARR. Genotyping was conducted with a 13.2 K single-nucleotide polymorphism (SNP) array and 222 simple sequence repeat (SSR) markers. Statistical analyses of the phenotypic data indicated significant (P < 0.001) genotypic effects and significant G × E interactions (P < 0.05) in all experiments. After filtering, 3050 (23.1%) of the SNP and 30 (13.5%) of the SSR markers were retained for linkage analysis, which distributed 2999 (2978 SNP + 21 SSR) of the markers onto nine linkage groups representing the seven chromosomes of pea. Mapping of quantitative trait loci (QTL) identified 8 major-effect (R2 > 20%), 13 moderate-effect (10% < R2 < 20%) effect and 6 minor-effect (R2 < 10%) QTL. A genomic region on chromosome 4, delimited by the SNP markers PsCam037549_22628_1642 and PsCam026054_14999_2864, was identified as the most consistent region responsible for partial resistance to A. euteiches isolate Ae-MDCR1. Other genomic regions important for resistance were of the order chromosome 5, 6 and 7.


Subject(s)
Aphanomyces/physiology , Disease Resistance/immunology , Microsatellite Repeats , Pisum sativum/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genetic Linkage , Pisum sativum/growth & development , Pisum sativum/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/microbiology
17.
BMC Genomics ; 22(1): 442, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34118867

ABSTRACT

BACKGROUND: Rutabaga or swede (Brassica napus ssp. napobrassica (L.) Hanelt) varies in root and leaf shape and colour, flesh colour, foliage growth habits, maturity date, seed quality parameters, disease resistance and other traits. Despite these morphological differences, no in-depth molecular analyses of genetic diversity have been conducted in this crop. Understanding this diversity is important for conservation and broadening the use of this resource. RESULTS: This study investigated the genetic diversity within and among 124 rutabaga accessions from five Nordic countries (Norway, Sweden, Finland, Denmark and Iceland) using a 15 K single nucleotide polymorphism (SNP) Brassica array. After excluding markers that did not amplify genomic DNA, monomorphic and low coverage site markers, the accessions were analyzedwith 6861 SNP markers. Allelic frequency statistics, including polymorphism information content (PIC), minor allele frequency (MAF) and mean expected heterozygosity ([Formula: see text]e) and population differentiation statistics such as Wright's F-statistics (FST) and analysis of molecular variance (AMOVA) indicated that the rutabaga accessions from Norway, Sweden, Finland and Denmark were not genetically different from each other. In contrast, accessions from these countries were significantly different from the accessions from Iceland (P < 0.05). Bayesian analysis with the software STRUCTURE placed 66.9% of the rutabaga accessions into three to four clusters, while the remaining 33.1% constituted admixtures. Three multivariate analyses: principal coordinate analysis (PCoA), the unweighted pair group method with arithmetic mean (UPGMA) and neighbour-joining (NJ) clustering methods grouped the 124 accessions into four to six subgroups. CONCLUSION: Overall, the correlation of the accessions with their geographic origin was very low, except for the accessions from Iceland. Thus, Icelandic rutabaga accessions can offer valuable germplasm for crop improvement.


Subject(s)
Brassica napus , Genetics, Population , Polymorphism, Single Nucleotide , Bayes Theorem , Brassica napus/genetics , Denmark , Finland , Genetic Variation , Iceland , Molecular Biology , Norway , Sweden
18.
Pathogens ; 10(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919064

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is an important soilborne disease of the Brassicaceae. Knowledge of the spatial dynamics of P. brassicae at the field level and the influence of soil properties on pathogen spatial patterns can improve understanding of clubroot epidemiology and management. To study the spatial patterns of P. brassicae inoculum density and their relationship to different soil properties, four clubroot-infested fields in central Alberta, Canada, were sampled in 2017 and 2019, and P. brassicae inoculum density, soil pH, and boron, calcium, and magnesium concentrations were quantified. Spatial autocorrelation of the inoculum density was estimated for each of the fields in both years with the Moran's I and semi-variograms. A Bayesian hierarchical spatial approach was used to model the relationship between P. brassicae inoculum density and the soil parameters. Patchiness of the pathogen was detected, with most patches located at the field edges and adjacent to the entrance. Infested patches grew in size from 2017 to 2019, with an average increase in diameter of 221.3 m and with this growth determined by the maximum inoculum density and active dispersal methods such as movement by machinery and wind. Soil pH, boron, calcium, and magnesium concentrations were not found to have an important effect on the inoculum density of P. brassicae.

19.
Sci Rep ; 11(1): 6599, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758222

ABSTRACT

Genetic resistance is a successful strategy for management of clubroot (Plasmodiophora brassicae) of brassica crops, but resistance can break down quickly. Identification of novel sources of resistance is especially important when new pathotypes arise. In the current study, the reaction of 177 accessions of Brassica napus to four new, virulent pathotypes of P. brassicae was assessed. Each accession was genotyped using genotyping by sequencing to identify and map novel sources of clubroot resistance using mixed linear model (MLM) analysis. The majority of accessions were highly susceptible (70-100 DSI), but a few accessions exhibited strong resistance (0-20 DSI) to pathotypes 5X (21 accessions), 3A (8), 2B (7), and 3D (15), based on the Canadian Clubroot Differential system. In total, 301,753 SNPs were mapped to 19 chromosomes. Population structure analysis indicated that the 177 accessions belong to seven major populations. SNPs were associated with resistance to each pathotype using MLM. In total, 13 important SNP loci were identified, with 9 SNPs mapped to the A-genome and 4 to the C-genome. The SNPs were associated with resistance to pathotypes 5X (2 SNPs), 3A (4), 2B (5) and 3D (6). A Blast search of 1.6 Mb upstream and downstream from each SNP identified 13 disease-resistance genes or domains. The distance between a SNP locus and the nearest resistance gene ranged from 0.04 to 0.74 Mb. The resistant lines and SNP markers identified in this study can be used to breed for resistance to the most prevalent new pathotypes of P. brassicae in Canada.


Subject(s)
Brassica napus/genetics , Disease Resistance , Polymorphism, Single Nucleotide , Brassica napus/microbiology , Plasmodiophorida/pathogenicity , Quantitative Trait Loci
20.
Plant Dis ; 105(11): 3694-3704, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33507096

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae Woronin, is a significant threat to the canola (Brassica napus L.) industry in Canada. Clubroot resistance has been overcome in more than 200 fields since 2013, representing one of the biggest challenges to sustainable canola production. The genetic structure of 36 single-spore isolates derived from 12 field isolates of P. brassicae collected before and after the introduction of clubroot resistant (CR) canola cultivars (2005-2014) was evaluated by simple sequence repeat (SSR) marker analysis. Polymorphisms were detected in 32 loci with the identification of 93 distinct alleles. A low level of genetic diversity was found among the single-spore isolates. Haploid linkage disequilibrium and number of migrants suggested that recombination and migration were rare or almost absent in the tested P. brassicae population. A relatively clear relationship was found between the genetic structure and virulence phenotypes of the pathogen as defined on the differential hosts of Somé et al., Williams, and the Canadian Clubroot Differential (CCD) set. Although genetic variability within each pathotype group, as classified on each differential system, was low, significant genetic differentiation was observed among the pathotypes. The highest correlation between genetic structure and virulence was found among matrices produced with genetic data and the hosts of the CCD set, with a threshold index of disease of 50% to distinguish susceptible from resistant reactions. Genetically homogeneous single-spore isolates provided a more complete and clearer picture of the population genetic structure of P. brassicae, and the results suggest some promise for the development of pathotype-specific primers.


Subject(s)
Brassica napus , Plasmodiophorida , Brassica napus/parasitology , Canada , Disease Resistance , Plant Diseases/parasitology , Plasmodiophorida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...