Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Stem Cells ; 16(4): 415-424, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37643762

ABSTRACT

Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

2.
Am J Cancer Res ; 13(6): 2410-2425, 2023.
Article in English | MEDLINE | ID: mdl-37424800

ABSTRACT

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with poor prognosis and limited treatment options. While 5-fluorouracil (5-FU) has not been widely employed in GBM therapy, emerging research indicates its potential for effectiveness when combined with advanced drug delivery systems to improve its transport to brain tumors. This study aims to investigate the role of THOC2 expression in 5-FU resistance in GBM cell lines. We evaluated diverse GBM cell lines and primary glioma cells for 5-FU sensitivity, cell doubling times, and gene expression. We observed a significant correlation between THOC2 expression and 5-FU resistance. To further investigate this correlation, we selected five GBM cell lines and developed 5-FU resistant GBM cells, including T98FR cells, through long-term 5-FU treatment. In 5-FU challenged cells, THOC2 expression was upregulated, with the highest increase in T98FR cells. THOC2 knockdown in T98FR cells reduced 5-FU IC50 values, confirming its role in 5-FU resistance. In a mouse xenograft model, THOC2 knockdown attenuated tumor growth and extended survival duration after 5-FU treatment. RNA sequencing identified differentially expressed genes and alternative splicing variants in T98FR/shTHOC2 cells. THOC2 knockdown altered Bcl-x splicing, increasing pro-apoptotic Bcl-xS expression, and impaired cell adhesion and migration by reducing L1CAM expression. These results suggest that THOC2 plays a crucial role in 5-FU resistance in GBM and that targeting THOC2 expression could be a potential therapeutic strategy for improving the efficacy of 5-FU-based combination therapies in GBM patients.

3.
Int J Stem Cells ; 16(4): 438-447, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37385638

ABSTRACT

Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

4.
Exp Neurobiol ; 30(3): 203-212, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34230222

ABSTRACT

The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP-flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.

5.
Exp Neurobiol ; 27(4): 287-298, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30181691

ABSTRACT

Ischemic stroke and cerebral infarction triggered by the blockage of blood supply can cause damage to the brain via a complex series of pathological changes. Recently, diverse therapies have emerged as promising candidates for the treatment of stroke. These treatments exert therapeutic effects by acting on diverse target molecules and cells in different time windows from the acute to chronic phases. Here, using immunohistochemistry, we show pathophysiological changes in the brain microenvironment at the hyperacute (within 6 h), acute (1~3 days), subacute (7 days), and chronic (1 month) phases following ischemic injury. Ischemic injury in rats was induced by occluding the middle cerebral artery and was validated by magnetic resonance imaging. The progression of damage to the brain was evaluated by immunohistochemistry for NeuN+ neurons, GFAP+ astrocytes, and Iba1+ microglia, and by the emergence of the cell death-related molecules such as AIF, FAF1, and activated caspase-3. Our data regarding the spatial and temporal information on pathophysiological changes may warrant the investigation of the timing of administration of therapeutic treatments in preclinical studies with an animal model of stroke.

6.
Stud Health Technol Inform ; 85: 228-33, 2002.
Article in English | MEDLINE | ID: mdl-15458091

ABSTRACT

In this ongoing study, we are trying to make Visible Korean Human (Mar 2000--Feb 2005). The complete MRIs and CTs of the Korean cadaver's entire body are scanned. The cadaver is serially-sectioned at 0.2 mm thickness without any missing images. The anatomical structures in the sectioned images are segmented. The Visible Korean Human is expected to be more helpful than Visible Human in the following ways. First, the Korean data will be more helpful in diagnosing and treating the patients belonging to the yellow race. Second, MRIs and CTs of the entire body at 1 mm thickness will be more helpful in studying the MRIs and CTs. Third, sectioned images without any missing images will be more helpful in making the complete 3D images. Fifth, small pixel size (0.2 mm x 0.2 mm) and thin thickness (0.2 mm) of sectioned images will be more helpful in showing the small anatomical structures greater than 0.2 mm. Sixth, the additional segmented images will be more helpful in making the 3D image and virtual dissection software. The Visible Korean Human will be the basis for making better 3D image and virtual dissection software which will be more helpful in medical education.


Subject(s)
Anatomy, Cross-Sectional , Asian People , Computer Simulation , User-Computer Interface , Adult , Aged , Algorithms , Anthropometry , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Software , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...