Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37751299

ABSTRACT

The B cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL2 mutations have been described, this probably only explains a subset of resistant cases. Using 2 complementary functional precision medicine techniques - BH3 profiling and high-throughput kinase activity mapping - we found that hyperphosphorylation of BCL-2 family proteins, including antiapoptotic myeloid leukemia 1 (MCL-1) and BCL-2 and proapoptotic BCL-2 agonist of cell death (BAD) and BCL-2 associated X, apoptosis regulator (BAX), underlies functional mechanisms of both intrinsic and acquired resistance to venetoclax in CLL and DLBCL. Additionally, we provide evidence that antiapoptotic BCL-2 family protein phosphorylation altered the apoptotic protein interactome, thereby changing the profile of functional dependence on these prosurvival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs rewired these dependencies, thus restoring sensitivity to venetoclax in a panel of venetoclax-resistant lymphoid cell lines, a resistant mouse model, and in paired patient samples before venetoclax treatment and at the time of progression.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Mice , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , bcl-X Protein/genetics , Apoptosis Regulatory Proteins , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism
2.
Nat Cancer ; 4(2): 240-256, 2023 02.
Article in English | MEDLINE | ID: mdl-36759733

ABSTRACT

BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through ß-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Cyclooxygenase 2/genetics , Cyclooxygenase 2/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Signaling System , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , src-Family Kinases/genetics , src-Family Kinases/therapeutic use
3.
Elife ; 122023 01 24.
Article in English | MEDLINE | ID: mdl-36692000

ABSTRACT

Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.


Subject(s)
Carcinoma, Hepatocellular , Cyclic AMP-Dependent Protein Kinases , Humans , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycogen Synthase Kinase 3/metabolism , Carcinoma, Hepatocellular/genetics , Signal Transduction , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor
4.
Cancer Cell ; 38(1): 129-143.e7, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32531271

ABSTRACT

Using unbiased kinase profiling, we identified protein kinase A (PKA) as an active kinase in small cell lung cancer (SCLC). Inhibition of PKA activity genetically, or pharmacologically by activation of the PP2A phosphatase, suppresses SCLC expansion in culture and in vivo. Conversely, GNAS (G-protein α subunit), a PKA activator that is genetically activated in a small subset of human SCLC, promotes SCLC development. Phosphoproteomic analyses identified many PKA substrates and mechanisms of action. In particular, PKA activity is required for the propagation of SCLC stem cells in transplantation studies. Broad proteomic analysis of recalcitrant cancers has the potential to uncover targetable signaling networks, such as the GNAS/PKA/PP2A axis in SCLC.


Subject(s)
Chromogranins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Protein Phosphatase 2/metabolism , Proteomics/methods , Small Cell Lung Carcinoma/metabolism , A549 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chromogranins/genetics , Cisplatin/administration & dosage , Cisplatin/pharmacology , Cyclic AMP-Dependent Protein Kinases/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Protein Phosphatase 2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...