Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932324

ABSTRACT

Mumps virus (MuV) causes an acute contagious human disease characterized by swelling of the parotid glands. Despite the near elimination of mumps in many countries, the disease has recurred, even in vaccinated populations, especially adolescents. Immunization effectivity of the genotype A vaccine strain Jeryl Lynn (JL) is declining as genotype A is no longer predominant; therefore, a new vaccine strain and booster vaccine are required. We generated a cell culture-adapted MuV genotype F called F30 and evaluated its immunogenicity and cross-protective activity against diverse genotypes. F30 genome nucleotide sequence determination revealed changes in the NP, L, SH, and HN genes, leading to five amino acid changes compared to a minimally passaged stock (F10). F30 showed delayed growth, smaller plaque size in Vero cells, and lower neurotoxicity in neonatal mice than F10. Furthermore, F30 was immunogenic to other genotypes, including the JL vaccine strain, with higher efficacy than that of JL for homologous and heterologous immunization. Further, F30 exhibited cross-protective immunity against MuV genotypes F and G in Ifnar-/- mice after a third immunization with F30 following two doses of JL. Our data suggest that the live-attenuated virus F30 could be an effective booster vaccine to control breakthrough infections and mumps epidemics.

2.
Vaccine X ; 17: 100437, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317857

ABSTRACT

The mumps virus (MuV) causes a highly contagious human disease characterized by swelling of the parotid glands. Although the administration of an attenuated Jeryl Lynn (JL) MuV vaccine shows efficacy in reducing the incidence of MuV infection, sporadic mumps outbreaks still occur in vaccinated populations. We have previously established that an inactivated F genotype mumps vaccine has a higher neutralizing antibody titer against diverse circulating mumps viruses in mice. Here, we aimed to develop a vaccination strategy to enhance the immune response for MuV and assess the effects of heterologous vaccination compared with homologous approaches. We administered an inactivated F genotype mumps vaccine booster following a homologous prime-boost regime and compared its efficacy with three doses of homologous JL vaccine in mice. We demonstrated robust stimulation of neutralizing antibodies and cellular immune response of interferon-γ-secreting cytotoxic T cells following administration of an inactivated F genotype mumps vaccine booster after a homologous prime-boost regime with JL. Compared with the homologous prime-boost regime, this heterologous prime-boost regime showed protective efficacy against the F genotype of MuV. These findings suggest that the heterologous vaccination strategy based on the administration of an inactivated F genotype mumps vaccine provides more effective cross-protection against circulating wild-type mumps viruses than homologous vaccination.

3.
Vaccine ; 42(6): 1283-1291, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38310019

ABSTRACT

Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.


Subject(s)
Smallpox Vaccine , Smallpox , Variola virus , Animals , Mice , Humans , Smallpox/prevention & control , Vaccines, Attenuated , Prospective Studies , Vaccinia virus/genetics , Immunity, Cellular , Antigens, Viral , Antibodies, Viral , Mice, Inbred BALB C
4.
PLoS One ; 18(12): e0295594, 2023.
Article in English | MEDLINE | ID: mdl-38060612

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic worldwide. As of September 2023, the number of confirmed coronavirus cases has reached over 770 million and caused nearly 7 million deaths. The World Health Organization assigned and informed the characterization of variants of concern (VOCs) to help control the COVID-19 pandemic through global monitoring of circulating viruses. Although many vaccines have been proposed, developing an effective vaccine against variants is still essential to reach the endemic stage of COVID-19. We designed five DNA vaccine candidates composed of the first isolated genotype and major SARS-CoV-2 strains from isolated Korean patients classified as VOCs, such as Alpha, Beta, Gamma, and Delta. To evaluate the immunogenicity of each genotype via homologous and heterologous vaccination, mice were immunized twice within a 3-week interval, and the blood and spleen were collected 1 week after the final vaccination to analyze the immune responses. The group vaccinated with DNA vaccine candidates based on the S genotype and the Alpha and Beta variants elicited both humoral and cellular immune responses, with higher total IgG levels and neutralizing antibody responses than the other groups. In particular, the vaccine candidate based on the Alpha variant induced a highly diverse cytokine response. Additionally, we found that the group subjected to homologous vaccination with the S genotype and heterologous vaccination with S/Alpha induced high total IgG levels and a neutralization antibody response. Homologous vaccination with the S genotype and heterologous vaccination with S/Alpha and S/Beta significantly induced IFN-γ immune responses. The immunogenicity after homologous vaccination with S and Alpha and heterologous vaccination with the S/Alpha candidate was better than that of the other groups, indicating the potential for developing novel DNA vaccines against different SARS-CoV-2 variants.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Animals , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics , Vaccination , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
6.
Science ; 380(6646): 722-727, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37200413

ABSTRACT

Developing zero-global warming potential refrigerants has emerged as one area that helps address global climate change concerns. Various high-efficiency caloric cooling techniques meet this goal, but scaling them up to technologically meaningful performance remains challenging. We have developed an elastocaloric cooling system with a maximum cooling power of 260 watts and a maximum temperature span of 22.5 kelvin. These values are among the highest reported for any caloric cooling system. Its key feature is the compression of fatigue-resistant elastocaloric nitinol (NiTi) tubes configured in a versatile multimode heat exchange architecture, which allows the harnessing of both high delivered cooling power and large temperature spans. Our system shows that elastocaloric cooling, which only emerged 8 years ago, is a promising direction for commercializing caloric cooling.

7.
Vaccine ; 41(11): 1892-1901, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36792434

ABSTRACT

Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, ß, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Measles virus/genetics , Antibodies, Viral , COVID-19/prevention & control , Measles Vaccine
8.
Virology ; 573: 118-123, 2022 08.
Article in English | MEDLINE | ID: mdl-35751974

ABSTRACT

Coronavirus disease 2019 caused by the novel human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a major threat to public health worldwide. To deal with the needs of vaccine, we developed four DNA vaccine candidates against SARS-CoV-2, based on the full-length spike (S) or truncated S protein. Following mice vaccination, we measured T-cell response and antigen-specific neutralizing antibody (NAb) titer. All four candidates induced humoral immune responses, including elevated levels of total IgG and NAbs, and cell-mediated immune responses, including multiple cytokine expression. However, the full-length S DNA vaccine enhanced the immune responses most significantly. We then evaluated its appropriate antigen dose and vaccination schedule. Although all immunized groups showed higher immune response than the control group, inoculation with 50 µg antigen led to the highest NAb titer. Immunity was significantly increased after the third inoculation. Thus, the full-length S DNA vaccine can potentially prevent SARS-CoV-2 infection.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
9.
J Virol Methods ; 306: 114540, 2022 08.
Article in English | MEDLINE | ID: mdl-35550887

ABSTRACT

Japanese encephalitis is prevalent throughout the temperate and tropical regions of Asia and is caused by the Japanese encephalitis virus (JEV), a mosquito-borne viral pathogen. The plaque reduction neutralization test (PRNT) is currently recommended as the gold standard test for detecting human antibodies against JEV. The plaque assay is the most widely used method for detecting infectious virions and involves counting discrete plaques in cells. However, it is time-consuming, and results can be subjective (owing to analyst variability during manual plaque counting). The focus reduction neutralization test (FRNT), which is based on an immuno-colorimetric assay, can be used to automatically count foci formed by the JEV. Here, we compared the efficacy of PRNT and FRNT in measuring the neutralizing antibody titers using 102 serum samples from vaccinated and unvaccinated individuals. We observed positive correlations between these neutralization assays against the Nakayama and Beijing strains (R2 = 0.98 and 0.77, respectively). Thus, FRNT may be preferable to PRNT for evaluating the efficacy of JEV vaccines in large-scale serological studies.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Animals , Antibodies, Neutralizing , Antibodies, Viral , Encephalitis, Japanese/diagnosis , Humans , Neutralization Tests/methods , Viral Plaque Assay
10.
Vaccines (Basel) ; 10(4)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35455310

ABSTRACT

Smallpox is an acute contagious disease caused by the variola virus. According to WHO guidelines, the smallpox vaccine is administrated by scarification into the epidermis using a bifurcated needle moistened with a vaccine solution. However, this invasive vaccination method involving multiple skin punctures requires a special technique to inoculate, as well as a cold chain for storage and distribution of vaccine solutions containing a live virus. Here, we report a transcutaneous smallpox vaccination using a live vaccinia-coated microneedle (MN) patch prepared by a low-temperature multiple nanoliter-level dispensing system, enabling accurate transdermal delivery of live vaccines and maintenance of bioactivity. The live vaccinia in hyaluronic acid (HA) solutions was selectively coated on the solid MN tips, and the coating amount of the vaccine was precisely controlled through a programmed multiple dispensing process with high accuracy under low temperature conditions (2-8 °C) for smallpox vaccination. Inoculation of mice (BALB/C mouse) with the MN patch coated with the second-generation smallpox vaccine increased the neutralizing antibody titer and T cell immune response. Interestingly, the live vaccine-coated MN patch maintained viral titers at -20 °C for 4 weeks and elevated temperature (37 °C) for 1 week, highlighting improved storage stability of the live virus formulated into coated MN patches. This coated MN platform using contact dispensing technique provides a simple and effective method for smallpox vaccination.

11.
Biomed Chromatogr ; 36(3): e5298, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34913179

ABSTRACT

This is a metabolomics study for monitoring altered amino acid (AA) and organic acid (OA) metabolism of in eyes from aging an mouse model at 8 and 18 weeks and 18 months. Simultaneous metabolic profiling analysis of OAs and AAs was performed as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. A total of 42 metabolites-24 AAs and 18 OAs-were determined and their composition values were normalized to the corresponding mean values of 8-week-old mice as the control group. Then their normalized values were plotted as star graphs, which were distorted and readily distinguishable for each age-related group. Among the 42 metabolites, 18 AAs and 11 OAs were age dependent and significantly different (p < 0.05). Principal component analysis and partial least squares discriminant analysis showed unclear separation between 8- and 18-week-old mice but clear separation between these and 18-month-old mice. In particular, the variable importance in projection scores of 4-hydroxyproline, cis-aconitic acid, glycine, isocitric acid, leucine, pipecolic acid and lysine from partial least-squares-discriminant analysis were higher than 1.3. A heatmap for the classification and visualization of 42 metabolites showed differences in metabolite changes with aging. Altered AA and OA profiles were monitored, which may explain the metabolic disturbance of AA and OA. These findings are related to mitochondrial dysfunctions related to energy metabolism and the impaired antioxidant system in the aging eye. Therefore, the present metabolomics results of the association between physiological states and altered metabolism of AA and OA will be useful for understanding the aging eye and related diseases.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Aging , Amino Acids/metabolism , Animals , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Mice
12.
Virology ; 559: 10-14, 2021 07.
Article in English | MEDLINE | ID: mdl-33780719

ABSTRACT

In our previous study, we designed and evaluated the efficacy of six DNA vaccine candidates based on the E protein of Zika virus (ZIKV). To optimize the DNA vaccine, we inoculated C57BL/6 and IFNAR1- mice with the vaccine candidate expressing tandem repeated ZIKV envelope domain III (ED III × 3) doses; 50 µg by intramuscular (IM), jet injection (JET), or electroporation (EP) routes. Results showed that vaccination by all routes induced humoral and cellular immunity. Among them, EP induced robust ZIKV E specific-total IgG and neutralizing antibodies, as well as T cell responses. Additionally, EP showed superior protective efficacy against the ZIKV Brazil strain compared to the IM and JET routes. Finally, in the dose optimization test of EP route, cellular immunity of 50 µg was induced a significant level than other dose groups. These results showed that the EP delivery system enhanced the potential immunogenicity and protective efficacy of DNA vaccines.


Subject(s)
Vaccines, DNA/immunology , Vaccines, DNA/standards , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/blood , Brazil , Drug Administration Routes , Female , Gene Deletion , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Vaccines, DNA/administration & dosage , Zika Virus Infection/immunology
13.
J Environ Manage ; 281: 111893, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33434759

ABSTRACT

Hydroponic cultivation is revolutionizing agricultural crop production techniques all over the world owing to its minimal environmental footprint, enhanced pest control, and high crop yield. However, waste nutrient solutions (WNS) generated from hydroponic systems contain high concentrations of N and P; moreover, they are discharged into surface and subsurface environments, leading to eutrophication and subsequent ecosystem degradation. In this study, the nutrient concentrations in WNS from 10 hydroponic indoor tomato, capsicum, and strawberry farms (greenhouses) were monitored for up to six months. The concentrations of N and P in WNS discharged from these farms were 48.0-494.0 mg L-1 and 12.7-96.9 mg L-1, respectively, which exceeded the Korean water quality guidelines (40.0 mg L-1 N and 4.0 mg L-1 P) for effluents. These concentrations were varied and dependent on the supplied nutrient concentrations, crop types, and growth stages. In general, the concentrations of N and P were in the following order: tomato > capsicum > strawberry. High N as NO3- and P as PO43- but low organic C in WNS warrant subsequent treatment before discharge. Therefore, this study tested a pilot-scale sequencing batch reactor (SBR) system as a potential technology for WNS treatment. The SBR system had BOD, COD, nitrate, and phosphate removal efficiency of 100, 100, 89.5, and 99.8%, respectively. In addition, the SBR system removed other cations such as Ca2+, dissolved Fe, K+, Mg2+, and Na+ and the removal efficiencies of those ions were 48, 67, 18, 14 and 15%, respectively. Lower methanol addition (0.63 mg L-1) and extended aeration (~30 min) improved SBR performance efficiency of C, N, and P removal. Thus, SBR showed significant promise as a treatment alternative to WNS pollutants originating from hydroponic systems.


Subject(s)
Nitrogen , Phosphorus , Bioreactors , Ecosystem , Hydroponics , Nutrients , Waste Disposal, Fluid
14.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992840

ABSTRACT

Lichens, composite organisms resulting from the symbiotic association between the fungi and algae, produce a variety of secondary metabolites that exhibit pharmacological activities. This study aimed to investigate the anti-inflammatory activities of the secondary metabolite atraric acid produced by Heterodermia hypoleuca. The results confirmed that atraric acid could regulate induced pro-inflammatory cytokine, nitric oxide, prostaglandin E2, induced nitric oxide synthase and cyclooxygenase-2 enzyme expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Meanwhile, atraric acid downregulated the expression of phosphorylated IκB, extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NFκB) signaling pathway to exhibit anti-inflammatory effects in LPS-stimulated RAW264.7 cells. Based on these results, the anti-inflammatory effect of atraric acid during LPS-induced endotoxin shock in a mouse model was confirmed. In the atraric acid treated-group, cytokine production was decreased in the peritoneum and serum, and each organ damaged by LPS-stimulation was recovered. These results indicate that atraric acid has an anti-inflammatory effect, which may be the underlying molecular mechanism involved in the inactivation of the ERK/NFκB signaling pathway, demonstrating its potential therapeutic value for treating inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ascomycota/chemistry , Hydroxybenzoates/pharmacology , Plant Extracts/pharmacology , Shock, Septic/drug therapy , Animals , Cytokines/metabolism , Female , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Shock, Septic/chemically induced , Signal Transduction/drug effects
15.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143368

ABSTRACT

In addition to their use as colorants, anthraquinone derivatives have numerous medical applications, for example, as antibacterial and antiinflammatory agents. We confirmed that physcion (an anthraquinone derivative) induces TNF-alpha production by macrophages and increased the expressions of surface molecules (CD40, CD80, and CD86) and major histocompatibility complex (MHC) II. Based on these results, we hypothesized that physcion might induce the maturation of dendritic cells (DCs) to antigen-presenting cells (APCs), and decided to conduct in vitro experiments using bone-marrow-derived DCs (BMDCs). Physcion was not toxic to DCs and increased the expression of surface molecules (e.g., CD40, CD80, CD86, and MHC II) and the production of cytokines (e.g., IL-12p70, IL-1beta, IL-6, and TNF-alpha), but not of IL-10. To confirm that DCs matured by physcion induce T-cell-immune responses, naive CD4+ T cells were treated with physcion-treated DCs or their supernatants. Physcion induced the maturation of DCs, which promoted the polarization of Th1 cells. Our results show physcion-induced DC maturation via TLR4, and that mature DCs promote the differentiation of Th1 cells without affecting the differentiation of Th2 cells. These findings show that physcion has potential use as a treatment for inflammatory diseases associated with Th1/Th2 cell imbalance.


Subject(s)
Cell Differentiation , Dendritic Cells/cytology , Emodin/analogs & derivatives , Th1 Cells/cytology , Animals , Apoptosis , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/cytology , Cell Death , Coloring Agents/chemistry , Cytokines/metabolism , Emodin/pharmacology , Gene Expression Profiling , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RAW 264.7 Cells , Th2 Cells/cytology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
J Funct Biomater ; 12(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383616

ABSTRACT

Titanium and titanium alloys are promising implant metallic materials because of their high strengths, low elastic moduli, high corrosion resistances, and excellent biocompatibilities. A large difference in elastic modulus between the implant material and bone leads to a stress shielding effect, which increases the probability of implant separation or decrease in the bone density around it. Thus, a lower elastic modulus is required for a better implant metallic material. ß titanium has a lower elastic modulus and high strength and can reduce the probability of the stress shielding effect. In this study, the applicability of the Ti-39Nb-6Zr+0.45Al alloy, obtained by adding a small amount of aluminum to the Ti-39Nb-6Zr alloy, as a biomedical implant material was evaluated. The mechanical properties and biocompatibility of the alloy were evaluated. The biocompatibility of Ti-39Nb-6Zr+0.45Al was similar to that of Ti-39Nb-6Zr according to in vitro and in vivo experiments. In addition, the biological corrosion resistances were evaluated through a corrosion test using a 0.9% NaCl solution, which is equivalent to physiological saline. The corrosion resistance was improved by the addition of Al. The yield strength of the Ti-39Nb-6Zr+0.45Al alloy was improved by approximately 20%. The excellent biocompatibility confirmed its feasibility for use as a biomedical implant material.

17.
Science ; 366(6469): 1116-1121, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31780556

ABSTRACT

Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors-enhancing the materials efficiency by a factor of four to seven-and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.

18.
Toxicol Res (Camb) ; 8(5): 621-629, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31588340

ABSTRACT

We studied the effects of high mobility group box chromosomal protein 1 (HMGB1) and toll-like receptor (TLR4) in diisonoyl phthalate (DINP)-induced asthma. Mice with DINP-induced asthma were treated with a TLR4-signaling inhibitor or anti-HMGB1 antibody, and various markers of asthma were measured 24 h later. DINP increased airway hyperresponsiveness, numbers of cells in BALF, numbers of inflammatory cells (leukocytes, lymphocytes, monocytes, eosinophils, neutrophils, basophils) in blood, mucus production, pulmonary fibrosis, Th2 type cytokine levels in BALF, and lung cell apoptosis. On the other hand, administrations of TLR4-signaling inhibitors (TAK-242) or anti-HMGB1 antibodies to a mouse model of DINP-induced asthma reduced biological markers of asthma. These results show TLR4 and HMGB1 both contribute to DINP-induced asthma, and that the inhibitions of TLR4 or HMGB1 offer potential means of treating asthma induced by phthalates like DINP.

19.
PLoS One ; 14(8): e0220382, 2019.
Article in English | MEDLINE | ID: mdl-31386690

ABSTRACT

The skin is a very suitable organ for the induction of immune responses to vaccine antigens. Antigen delivery systems to the skin by needle and syringe directly deposit the antigen into the epidermal-dermal compartment, one of the most immunocompetent sites due to the presence of professional antigen-presenting cells aimed at the induction of antigen-specific T cells. In this study, we analyzed the amount of ovalbumin as an antigen delivered to the skin by a microneedle. When ovalbumin protein as an antigen was delivered to the skin of mice using a dissolving microneedle, it induced an immune response through the enhanced proliferation and cytokines production by the splenocytes and lymph nodes. Also, it effectively increased the ovalbumin-specific CD8+ T cell and CD4+ T cell population and induced an ovalbumin-specific CTL response against the graft of ovalbumin-expressing EG7 tumor cells in the immunized mice. Also, we identified the inhibition of tumor growth and prevention of tumor formation in the context of the therapeutic and prophylactic vaccine, respectively through EG-7 tumor mouse model. Finally, these data show the potential of patches as attractive antigen delivery vehicles.


Subject(s)
Drug Delivery Systems/methods , Immunotherapy/methods , Needles , Ovalbumin/administration & dosage , Transdermal Patch , Administration, Cutaneous , Animals , Antigens/administration & dosage , Antigens/pharmacology , Antigens/therapeutic use , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Drug Delivery Systems/standards , Immunity , Mice , Neoplasms/therapy , Ovalbumin/therapeutic use , T-Lymphocytes, Cytotoxic/cytology , Transdermal Patch/standards , Treatment Outcome
20.
Int J Biomater ; 2019: 9283207, 2019.
Article in English | MEDLINE | ID: mdl-31275396

ABSTRACT

Here we examine the effects of extracts of Poria cocos mycelium fermented with freeze-dried plum powder (PPE) on the α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells), relative to the effects of Prunus extract. We found that an extract of Prunus fermentation showed significant inhibition of melanogenesis and tyrosinase activity with no effect on cell proliferation and was more active compared to Prunus extract alone. Furthermore, we confirmed that medium containing 3% Prunus was the optimal culture substrate for fermentation with Poria cocos. These results provide evidence that Prunus fermentation extract affects skin whiting in murine B16 melanoma cells (B16 cells). Prunus contains rutin, oxalic acid, succinic acid, and fumaric acid, which help in digestion and fatigue recovery. The rutin of Prunus mume is reported to have antioxidant and anti-inflammatory effects. Also, Prunus extract has a tyrosinase inhibitory activity for skin whiting through its antioxidant activity. Therefore, we believe the Prunus extract for Poria cocos fermentation can be provided as a potential mediator to induce skin whiting.

SELECTION OF CITATIONS
SEARCH DETAIL
...