Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Technol Knowl Soc ; 19(1): 21-52, 2023.
Article in English | MEDLINE | ID: mdl-37273904

ABSTRACT

Tele-operated social robots (telerobots) offer an innovative means of allowing children who are medically restricted to their homes (MRH) to return to their local schools and physical communities. Most commercially available telerobots have three foundational features that facilitate child-robot interaction: remote mobility, synchronous two-way vision capabilities, and synchronous two-way audio capabilities. We conducted a comparative analysis between the Toyota Human Support Robot (HSR) and commercially available telerobots, focusing on these foundational features. Children who used these robots and these features on a daily basis to attend school were asked to pilot the HSR in a simulated classroom for learning activities. As the HSR has three additional features that are not available on commercial telerobots: (1) pan-tilt camera, (2) mapping and autonomous navigation, and (3) robot arm and gripper for children to "reach" into remote environments, participants were also asked to evaluate the use of these features for learning experiences. To expand on earlier work on the use of telerobots by remote children, this study provides novel empirical findings on (1) the capabilities of the Toyota HSR for robot-mediated learning similar to commercially available telerobots and (2) the efficacy of novel HSR features (i.e., pan-tilt camera, autonomous navigation, robot arm/hand hardware) for future learning experiences. We found that among our participants, autonomous navigation and arm/gripper hardware were rated as highly valuable for social and learning activities.

2.
Front Neurorobot ; 16: 882518, 2022.
Article in English | MEDLINE | ID: mdl-35692490

ABSTRACT

In their book "How the Body Shapes the Way We Think: A New View of Intelligence," Pfeifer and Bongard put forth an embodied approach to cognition. Because of this position, many of their robot examples demonstrated "intelligent" behavior despite limited neural processing. It is our belief that neurorobots should attempt to follow many of these principles. In this article, we discuss a number of principles to consider when designing neurorobots and experiments using robots to test brain theories. These principles are strongly inspired by Pfeifer and Bongard, but build on their design principles by grounding them in neuroscience and by adding principles based on neuroscience research. Our design principles fall into three categories. First, organisms must react quickly and appropriately to events. Second, organisms must have the ability to learn and remember over their lifetimes. Third, organisms must weigh options that are crucial for survival. We believe that by following these design principles a robot's behavior will be more naturalistic and more successful.

3.
Front Neurorobot ; 14: 570308, 2020.
Article in English | MEDLINE | ID: mdl-33192435

ABSTRACT

Understanding why deep neural networks and machine learning algorithms act as they do is a difficult endeavor. Neuroscientists are faced with similar problems. One way biologists address this issue is by closely observing behavior while recording neurons or manipulating brain circuits. This has been called neuroethology. In a similar way, neurorobotics can be used to explain how neural network activity leads to behavior. In real world settings, neurorobots have been shown to perform behaviors analogous to animals. Moreover, a neuroroboticist has total control over the network, and by analyzing different neural groups or studying the effect of network perturbations (e.g., simulated lesions), they may be able to explain how the robot's behavior arises from artificial brain activity. In this paper, we review neurorobot experiments by focusing on how the robot's behavior leads to a qualitative and quantitative explanation of neural activity, and vice versa, that is, how neural activity leads to behavior. We suggest that using neurorobots as a form of computational neuroethology can be a powerful methodology for understanding neuroscience, as well as for artificial intelligence and machine learning.

4.
Biol Cybern ; 114(2): 169-186, 2020 04.
Article in English | MEDLINE | ID: mdl-31686197

ABSTRACT

The ability to rapidly assimilate new information is essential for survival in a dynamic environment. This requires experiences to be encoded alongside the contextual schemas in which they occur. Tse et al. (Science 316(5821):76-82, 2007) showed that new information matching a preexisting schema is learned rapidly. To better understand the neurobiological mechanisms for creating and maintaining schemas, we constructed a biologically plausible neural network to learn context in a spatial memory task. Our model suggests that this occurs through two processing streams of indexing and representation, in which the medial prefrontal cortex and hippocampus work together to index cortical activity. Additionally, our study shows how neuromodulation contributes to rapid encoding within consistent schemas. The level of abstraction of our model further provides a basis for creating context-dependent memories while preventing catastrophic forgetting in artificial neural networks.


Subject(s)
Electronic Data Processing , Memory , Neural Networks, Computer , Animals , Artificial Intelligence , Hippocampus/physiology , Learning , Neurobiology , Prefrontal Cortex/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...