Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Med Chir (Tokyo) ; 62(1): 35-44, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34732591

ABSTRACT

Combining single-joint hybrid assistive limb (HAL-SJ) with botulinum toxin A (BTX-A) therapy is novel and has great therapeutic potential for the rehabilitation of stroke patients with upper limb paralysis. The purpose of this observational case series study was to evaluate the effect of BTX-A and HAL-SJ combination therapy on different exoskeleton robots used for treating upper limb paralysis. The HAL-SJ combination received a BTX-A injection followed by HAL-SJ-assisted rehabilitation for 60 min per session, 10 times per week, during 2 weeks of hospitalization. Clinical evaluations to assess motor function, limb functions used during daily activities, and spasticity were performed prior to injection, at 2-week post-treatment intervention, and at the 4-month follow-up visit. The total Fugl-Meyer assessment-upper limb (FMA-UE), proximal FMA-UE, action research arm test (ARAT), Motor Activity Log (MAL), and Disability Assessment Scale (DAS) showed a statistically significant difference, and a large effect size. However, the FMA distal assessment at 2-week post-treatment intervention showed no significant difference and a moderate effect size. The FMA-UE scores of the extracted systematic review articles showed that our design improved upper limb function. The change in the total FMA-UE score in this study showed that, compared to previous reports in the exoskeletal robotic therapy group, our combination therapy had a higher score than five of the seven references. Our results suggest that BTX-A therapy and HAL-SJ combination therapy may improve upper limb function, similar to other treatment methods in the literature.


Subject(s)
Botulinum Toxins, Type A , Robotics , Stroke Rehabilitation , Stroke , Humans , Recovery of Function , Stroke/complications , Stroke/drug therapy , Treatment Outcome , Upper Extremity
2.
SAGE Open Med ; 8: 2050312120940546, 2020.
Article in English | MEDLINE | ID: mdl-32685151

ABSTRACT

OBJECTIVES: This pilot study aimed to investigate the safety and efficacy of transcranial direct current stimulation (tDCS) for chronic stroke in adult and pediatric patients. We also aimed to verify the efficacy of botulinum toxin A and peripheral neuromuscular electrical stimulation combined therapy involving bilateral tDCS in adult patients with chronic stroke. METHODS: We conducted a pilot study applying an unblinded, non-randomized design. Eleven patients were recruited, and classified into three groups. Group I-a involved bilateral transcranial direct current stimulation and intensive occupational therapy for chronic stroke in adult patients. Group I-b involved bilateral tDCS and intensive occupational therapy for chronic stroke in pediatric patients. Group II involved bilateral tDCS, peripheral neuromuscular electrical stimulation, and intensive occupational therapy after botulinum toxin A injection for chronic stroke in adult patients. Clinical evaluations to assess motor function and spasticity were performed at baseline as well as in 2-week and 4-month follow-up visits. The questionnaire included questions regarding the presence of tDCS side effects, such as headache, redness, pain, itching, and fever. RESULTS: There were clinically meaningful changes in total Fugl-Meyer Assessment Upper Extremity (FMA-UE) scores at the 2-week follow-up and in the Action Research Arm Test (ARAT) scores at 4-month follow-up in Group I-b. In addition, Group II showed significant improvement in total FMA-UE scores in the 2-week follow-up (p < 0.05) but not on the ARAT scores (p > 0.05). However, Group II showed improvements in total Motor Activity Log scores at both follow-up visits (p < 0.05). No serious adverse events were reported. CONCLUSION: The results of this study indicate that tDCS therapy is a potential treatment in pediatric patients with chronic stroke. Furthermore, our data indicate that botulinum toxin A and peripheral neuromuscular electrical stimulation combined therapy may enhance the efficacy of tDCS on motor function.

3.
Neurol Med Chir (Tokyo) ; 60(4): 217-222, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32173715

ABSTRACT

The single-joint Hybrid Assistive Limb (HAL-SJ) robot is an exoskeleton-type suit developed for the neurorehabilitation of upper limb function. Several studies have addressed the usefulness of the robot; however, the appropriate patient selection remains unclear. In this study, we evaluated the effectiveness of the HAL-SJ exoskeleton in improving upper limb function in the subacute phase after a stroke, as a function of the severity of arm paralysis. Our analysis was based on a retrospective review of 35 patients, treated using the HAL-SJ exoskeleton in the subacute phase after their stroke, between October 2014 and December 2018. The severity of upper limb impairment was quantified using the Brunnstrom recovery stage (BRS) as follows: severe, BRS score 1-2, n = 10; moderate, BRS 3-4, n = 12; and mild, BRS 5-6, n = 13. The primary endpoint was the improvement in upper limb function, from baseline to post-intervention, measured using the Fugl-Meyer assessment upper limb motor score (ΔFMA-UE; range 0-66). The ΔFMA-UE score was significant for all three severity groups (P <0.05). The magnitude of improvement was greater in the moderate group than in the mild group (P <0.05). The greatest improvement was attained for patients with a moderate level of upper limb impairment at baseline. Our findings support the feasibility of the HAL-SJ to improve upper limb function in the subacute phase after a stroke with appropriate patient selection. This study is the first report showing the effect of robot-assisted rehabilitation using the HAL-SJ, according to the severity of paralysis in acute stroke patients with upper extremity motor deficits.


Subject(s)
Arm , Exoskeleton Device , Neurological Rehabilitation/instrumentation , Paralysis/rehabilitation , Self-Help Devices , Stroke Rehabilitation/instrumentation , Equipment Design , Feasibility Studies , Humans , Neurologic Examination , Treatment Outcome
4.
Biomed Res Int ; 2019: 5462694, 2019.
Article in English | MEDLINE | ID: mdl-31011576

ABSTRACT

INTRODUCTION: Robotic therapy has drawn attention in the rehabilitation field including home-based rehabilitation. A previous study has reported that home-based therapy could be more effective for increasing upper limb activity than facility-based therapy. The single-joint hybrid assistive limb (HAL-SJ) is an exoskeleton robot developed according to the interactive biofeedback theory, and several studies have shown its effectiveness for upper limb function in stroke patients. A study of home-based robotic therapy has shown to enhance rehabilitation effectiveness for stroke patient with a paretic upper limb. However, home-based therapy involving a HAL-SJ in stroke patients with paretic upper limbs has not been investigated. The present study aimed to investigate paretic upper limb activity and function with home-based robotic therapy involving a HAL-SJ in stroke patients. MATERIALS AND METHODS: A home-based robotic therapy program involving a HAL-SJ was performed for 30 min per session followed by standard therapy for 30 min per session, 2 times a week, for 4 weeks (i.e., completion of all 8 sessions involved 8 h of rehabilitation), at home. After the intervention, patients were followed up by telephone and home visits for 8 weeks. The paretic upper limb activity and function were assessed using the Motor Activity Log (MAL; amount of use (AOU)), arm triaxial accelerometry (laterality index (LI)), the Fugl-Meyer assessment (FMA), and the action research arm test (ARAT), at baseline and week 4 and week 12 after the start of training. RESULTS: The study included 10 stroke patients (5 men; mean age, 61.1 ± 7.1 years). The AOU scores and LI significantly improved at week 4 after the start of training (p<0.05). However, no significant changes were observed in the LI at week 12 (p=0.161) and the FMA scores at both week 4 and week 12 (p=0.059 and p=0.083, respectively). The ARAT scores significantly improved at both week 4 and week 12 (p<0.05). CONCLUSION: Home-based robotic therapy combined with conventional therapy could be a valuable approach for increasing paretic upper limb activity and maintaining paretic upper limb function in the chronic phase of stroke.


Subject(s)
Stroke/physiopathology , Stroke/therapy , Upper Extremity/physiopathology , Aged , Exoskeleton Device , Female , Humans , Male , Middle Aged , Motor Activity/physiology , Pilot Projects , Recovery of Function/physiology , Robotic Surgical Procedures/methods , Robotics/methods , Stroke/surgery , Stroke Rehabilitation/methods , Treatment Outcome , Upper Extremity/surgery
5.
PLoS One ; 13(1): e0191361, 2018.
Article in English | MEDLINE | ID: mdl-29338060

ABSTRACT

INTRODUCTION: Robot-assisted rehabilitation has been increasingly drawing attention in the field of neurorehabilitation. The hybrid assistive limb (HAL) is an exoskeleton robot developed based on the "interactive biofeedback" theory, and several studies have shown its efficacy for patients with stroke. We aimed to investigate the mechanisms of the facilitative effect of neurorehabilitation using a single-joint HAL (HAL-SJ) and functional near-infrared spectroscopy (fNIRS). MATERIALS AND METHODS: Subacute stroke patients admitted to our hospital were assessed in this study for HAL eligibility. We evaluated motor-related cortical activity using an fNIRS system at baseline and immediately after HAL-SJ treatment on the same day. Cortical activity was determined through the relative changes in the hemoglobin concentrations. For statistical analysis, we compared the number of flexion/extension movements before and immediately after HAL-SJ treatment using paired t-test. fNIRS used both the methods of statistical parametric mapping and random effect analysis. RESULTS: We finally included 10 patients (eight men, two women; mean age: 66.8 ± 12.0 years). The mean number of flexion/extension movements within 15 s increased significantly from 4.2 ± 3.1 to 5.3 ± 4.1 immediately after training. fNIRS showed increased cortical activation in the primary motor cortex of the ipsilesional hemisphere immediately after HAL-SJ treatment compared to the baseline condition. CONCLUSIONS: This study is the first to support the concept of the biofeedback effect from the perspective of changes in cortical activity measured with an fNIRS system. The biofeedback effect of HAL immediately increased the task-related cortical activity, and this may address the functional recovery. Further studies are warranted to support our findings.


Subject(s)
Biofeedback, Psychology/instrumentation , Exoskeleton Device , Spectroscopy, Near-Infrared , Stroke Rehabilitation/instrumentation , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Tomography, X-Ray Computed
6.
J Neurol Sci ; 373: 182-187, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28131185

ABSTRACT

We investigated the combination of robot-assisted rehabilitation (RT) using a single-joint hybrid assistive limb (HAL-SJ) and botulinum toxin A (BTX-A) as therapy for paretic arm with spasticity in post-stroke patients. Participants were seven patients (4 females, 3 males; mean (±SD) age: 60.6±8.4years) who had spastic hemiplegia following chronic stroke. On the day following BTX-A injection, we started RT, which was performed for 20 sessions of 60min each over a two-week period. Clinical outcome measures, including Fugl-Meyer Assessment (FMA), Motor Activity Log (MAL), and Disability Assessment Scale (DAS), and cortical activity were evaluated at baseline, and two weeks, and four months following BTX-A injection. Cortical activity associated with elbow joint movement of the affected arm was assessed via functional near infrared spectroscopy (fNIRS). FMA, MAL, and DAS scores significantly improved at two weeks and four months (p<0.05), except DAS scores at four months (p=0.068). The fNIRS study showed that cortical activation increased in the ipsilesional primary sensorimotor area at two weeks and at the four months follow-up. Our pilot study showed that the combination of RT and BTX-A therapy was an effective approach for treating spastic hemiplegia due to stroke, and functional imaging study showed neuroplasticity induced by the treatment.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Hemiplegia/rehabilitation , Muscle Spasticity/rehabilitation , Musculoskeletal Manipulations , Neuromuscular Agents/therapeutic use , Stroke Rehabilitation , Aged , Arm/physiopathology , Combined Modality Therapy , Disability Evaluation , Female , Follow-Up Studies , Hemiplegia/drug therapy , Hemiplegia/etiology , Hemiplegia/physiopathology , Humans , Male , Middle Aged , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Muscle Spasticity/physiopathology , Neuronal Plasticity , Pilot Projects , Robotics , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/metabolism , Spectroscopy, Near-Infrared , Stroke/complications , Stroke/physiopathology , Treatment Outcome
7.
Assist Technol ; 28(1): 53-6, 2016.
Article in English | MEDLINE | ID: mdl-26478988

ABSTRACT

This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke.


Subject(s)
Artificial Limbs , Robotics/instrumentation , Self-Help Devices , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Aged , Feasibility Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...