Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 4: 119-128, 2023.
Article in English | MEDLINE | ID: mdl-38274783

ABSTRACT

OBJECTIVE: To determine if robotic ankle exoskeleton users decrease triceps surae muscle activity when using proportional myoelectric control, we studied healthy young participants walking with commercially available electromechanical ankle exoskeletons (Dephy Exoboot) with a novel controller. The vast majority of robotic lower limb exoskeletons do not have direct neural input from the user which makes adaptation of exoskeleton dynamics based on user intent difficult. Proportional myoelectric control has proven to allow considerable adaptation in muscle activation and gait kinematics in pneumatic, tethered ankle exoskeletons. In this study we quantified the changes in muscle activity and joint biomechanics of twelve participants walking for 30 minutes on a treadmill. RESULTS: The exoskeletons provided 29% of the peak total ankle power and 18% of the peak total ankle moment by the end of the practice session. There was a decrease of 12% in soleus, 17% in lateral gastrocnemius and 5% in medial gastrocnemius electromyography (EMG) root mean square (root mean squared) after walking with the exoskeleton for 30 minutes compared to not wearing the exoskeleton, but this difference was not statistically significant. There were no differences in joint biomechanics of the ankle, hip, or knee between the end of training compared to walking without the exoskeletons. CONCLUSIONS: Contrary to expectations, triceps surae muscle activity showed only small non-significant decreases in 30 minutes of walking with portable, electromechanical ankle exoskeletons under proportional myoelectric control. The commercially available ankle exoskeletons were likely too weak to produce a statistically meaningful decline in triceps surae recruitment. Future research should include a wider variety of tasks, including measurements of metabolic energy expenditure, and provide a longer period of adaptation to evaluate the ankle exoskeletons.

2.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Article in English | MEDLINE | ID: mdl-36176129

ABSTRACT

Proportional myoelectric control of robotic lower limb exoskeletons can increase the variability and adaptability of biomechanical behaviors for assisting human movement compared to traditional state-based control. Previous exoskeletons using proportional myoelectric control have relied on pneumatic actuators and been limited to laboratory use. We applied proportional myoelectric control to a robotic ankle exoskeleton using a brushless DC motor (Dephy) and enabled it to work in community settings. Benchtop testing verified electromechanical responses similar to biological values (electromechanical delay of 22 ms and time to peak activation of 123 ms). Four healthy participants trained for thirty minutes each using bilateral ankle exoskeletons. From minute one of powered walking to minute 30 of powered walking, peak soleus EMG reduced by 17.9% as they learned to walk with exoskeleton assistance. Our future work will extend the powered walking period, measure metabolic cost, and measure gait variability between participants using proportional myoelectric control on fully portable, electromechanical ankle exoskeletons.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Electromyography , Gait/physiology , Humans , Walking/physiology
3.
Article in English | MEDLINE | ID: mdl-36118291

ABSTRACT

Chlorpyrifos (CPF) is an organophosphorus insecticide that has gained significant attention cue to the reported toxicity associated with developmental exposure. While the canonical mechanism of toxicity of CPF involves the inhibition of brain acetylcholinesterase (AChE), we have reported that exposure of juvenile rats to levels of CPF that do not yield any inhibition of brain AChE results in neurobehavioral alterations at later ages. However, it is unclear what effect exposure to these low levels of CPF has on blood esterase activities which are frequently used not only as biomarkers of exposure but also to set exposure levels in risk assessment. To determine this, male and female rat pups were exposed orally from postnatal day 10 to 16 to either corn oil (vehicle) or 0.5, 0.75, or 1.0 mg/kg CPF. At 12 h after the final exposure, serum cholinesterase (ChE), butyrylcholinesterase (BChE), and carboxylesterase (CES), and red blood cell (RBC) and brain AChE activities were determined. There were no differences between sexes in either the controls or individual treatments for all enzymes. Only the highest dosage of 1.0 mg/kg CPF yielded significant brain AChE inhibition (22-24%) but all dosages significantly inhibited the blood esterases with inhibition being highest with serum CES (65-85%) followed by serum BChE (57-76%), RBC AChE (35-65%), and then serum ChE (16-32%). Our data verify that blood esterases are inhibited at dosages of CPF that alter neurobehavioral performance in the absence of effects on brain AChE activity.

4.
Article in English | MEDLINE | ID: mdl-37015690

ABSTRACT

Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.

5.
Int J Toxicol ; 36(5): 395-402, 2017.
Article in English | MEDLINE | ID: mdl-28820005

ABSTRACT

Repeated developmental exposure to the organophosphate (OP) insecticide chlorpyrifos (CPF) inhibits brain fatty acid amide hydrolase (FAAH) activity at low levels, whereas at higher levels, it inhibits brain monoacylglycerol lipase (MAGL) activity. FAAH and MAGL hydrolyze the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG), respectively. Peripherally, AEA and 2-AG have physiological roles in the regulation of lipid metabolism and immune function, and altering the normal levels of these lipid mediators can negatively affect these processes. Exposure to CPF alters brain endocannabinoid hydrolysis activity, but it is unclear whether low-level exposure alters this activity in peripheral tissues important in metabolic and immune function. Therefore, rat pups were exposed orally from day 10 to 16 to 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 (a specific FAAH inhibitor). At 12 hours postexposure, FAAH, MAGL, and cholinesterase (ChE) activities were determined. All treatments inhibited FAAH activity in brain, spleen, and liver. CPF inhibited ChE activity in spleen and liver (all dosages) and in brain (highest dosage only). CPF inhibited total 2-AG hydrolysis and MAGL-specific activity in brain and spleen (high dosage only). In liver, total 2-AG hydrolysis was inhibited by all treatments and could be attributed to inhibition of non-MAGL-mediated 2-AG hydrolysis, indicating involvement of other enzymes. MAGL-specific activity in liver was inhibited only by the high CPF dosage, whereas PF-04457845 slightly increased this activity. Overall, exposure to low levels of CPF and to PF-04457845 can alter endocannabinoid metabolism in peripheral tissues, thus potentially affecting physiological processes.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Arachidonic Acids/metabolism , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Endocannabinoids/metabolism , Glycerides/metabolism , Insecticides/toxicity , Polyunsaturated Alkamides/metabolism , Pyridazines/toxicity , Urea/analogs & derivatives , Animals , Brain/drug effects , Brain/metabolism , Cholinesterases/metabolism , Female , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/metabolism , Urea/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...