Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 299, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864136

ABSTRACT

The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , RNA, Ribosomal/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Gastrointestinal Microbiome/genetics
2.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468686

ABSTRACT

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sewage/virology , Base Sequence , COVID-19/epidemiology , California/epidemiology , Environmental Microbiology , Genome, Viral , Genotype , Humans , Metagenome , Metagenomics , Polymorphism, Single Nucleotide , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...