Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36903021

ABSTRACT

As part of extensive research on the properties of nickel-aluminum alloys, corrosion tests of sintered materials produced by the innovative HPHT/SPS (high pressure, high temperature/spark plasma sintering) method were performed in 0.1 molar H2SO4 acid. The hybrid, unique device used for this purpose (one of only two such devices operating in the world) is equipped with a Bridgman chamber, which allows heating with high-frequency pulsed current and sintering of powders under high pressure in the range of 4-8 GPa and at temperatures up to 2400 °C. Using this device for the production of materials contributes to the generation of new phases not obtainable by classical methods. In this article, the first test results obtained for the nickel-aluminum alloys never before produced by this method are discussed. Alloys containing 25 at.% Al, 37 at.% Al and 50 at.% Al were produced. The alloys were obtained by the combined effect of the pressure of 7 GPa and the temperature of 1200 °C generated by the pulsed current. The time of the sintering process was 60 s. The electrochemical tests, such as OCP (open circuit potential), polarization tests and EIS (electrochemical impedance spectroscopy), were carried out for the newly produced sinters and the results were compared with the reference materials, i.e., nickel and aluminum. The corrosion tests showed good corrosion resistance of the produced sinters, with corrosion rates of 0.091, 0.073 and 0.127 mm per year, respectively. It leaves no doubt that the good resistance of materials synthesized by powder metallurgy is due to the proper selection of the manufacturing process parameters, ensuring a high degree of material consolidation. This was further confirmed by the examinations of microstructure (optical microscopy and scanning electron microscopy) and the results of density tests (hydrostatic method). It has been shown that the obtained sinters were characterized by a compact, homogeneous and pore-free structure, though at the same time differentiated and multi-phase, while the densities of individual alloys reached a level close to the theoretical values. The Vickers hardness of the alloys was 334, 399 and 486 HV10, respectively.

2.
Materials (Basel) ; 16(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614778

ABSTRACT

The effect of zirconium diboride (ZrB2) and titanium diboride (TiB2) on the microstructure as well as the physical, mechanical, and tribological properties of composites based on 316 L steel is presented. Each reinforcing phase was added to the base alloy in the amount of 5 wt% and 10 wt%. The composites were fabricated by the SPS process (Spark Plasma Sintering). The results show that the weight fraction of the reinforcing phase affects the physical, mechanical, and tribological properties of the sintered composites. The sintered materials were characterized by a very high level of density. The addition of TiB2 has proved to be effective in increasing the hardness and compressive strength of the composites. The hardness of the composites with the addition of 10% TiB2 increased by 100% compared to the hardness of sintered 316L steel. It was found that introducing ZrB2 to the steel matrix significantly improved the wear resistance of the composites. The results showed that compared to 316L steel with the wear rate of 519 × 10-6 mm3/Nm, the wear rate of the composites containing 10% ZrB2 decreased more than twice, i.e., to 243 × 10-6 mm3/Nm.

3.
Materials (Basel) ; 14(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300731

ABSTRACT

Titanium diboride (TiB2) is a hard, refractory material, attractive for a number of applications, including wear-resistant machine parts and tools, but it is difficult to densify. The spark plasma sintering (SPS) method allows producing TiB2-based composites of high density with different sintering aids, among them titanium silicides. In this paper, Ti5Si3 is used as a sintering aid for the sintering of TiB2/10 wt % Ti5Si3 and TiB2/20 wt % Ti5Si3 composites at 1600 °C and 1700 °C for 10 min. The phase composition of the initial powders and produced composites was analyzed by the X-ray diffraction method using CuKα radiation. The microstructure was examined using scanning electron microscopy, accompanied by energy-dispersive spectroscopy (EDS). The hardness was determined using a diamond indenter of Vickers geometry loaded at 9.81 N. Friction-wear properties were tested in the dry sliding test in a ball-on-disc configuration, using WC as a counterpart material. The major phases present in the TiB2/Ti5Si3 composites were TiB2 and Ti5Si3. Traces of TiC were also identified. The hardness of the TiB2/Ti5Si3 composites was in the range of 1860-2056 HV1 and decreased with Ti5Si3 content, as well as the specific wear rate Wv. The coefficient of friction for the composites was in the range of 0.5-0.54, almost the same as for TiB2 sinters. The main mechanism of wear was abrasive.

4.
Materials (Basel) ; 14(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34300977

ABSTRACT

The aim of this study was to carry out the consolidation of zirconium diboride-reinforced composites using the SPS technique. The effect of the adopted method of powder mixture preparation (mixing in Turbula or milling in a planetary mill) and of the reinforcing phase content and sintering temperature on the microstructure, physical properties, strength and tribological properties of sintered composites was investigated. Experimental data showed that the maximum relative density of 94%-98% was obtained for the composites sintered at 1100 °C. Milling in a planetary mill was found to contribute to the homogeneous dispersion and reduced clustering of ZrB2 particles in the steel matrix, improving in this way the properties of sintered steel + ZrB2 composites. Morphological and microstructural changes caused by the milling process in a planetary mill increase the value of Young's modulus and improve the hardness, strength and wear resistance of steel + ZrB2 composites. Higher content of ZrB2 in the steel matrix is also responsible for the improvement in Young's modulus, hardness and abrasive wear resistance.

5.
Materials (Basel) ; 13(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322570

ABSTRACT

As part of the tests, a two-phase NiAl/Ni3Al alloy and a composite based on this alloy with 4 vol% addition of TiB2 were produced by the reactive FAST/SPS (Field Assisted Sintering Technology/Spark Plasma Sintering) sintering method. The sintering process was carried out at 1273 K for 30 s under an argon atmosphere. The effect of reactive SPS on the density, microstructure, and mechanical and tribological properties of a dual-phase Ni-Al intermetallic compound and Ni-Al-TiB2 composite was investigated. Products obtained were characterized by a high degree of sintering (over 99% of the theoretical density). The microstructure of sinters was characterized by a large diversity, mainly in regard to the structure of the dual-phase alloy (matrix). Compression tests showed satisfactory plastic properties of the manufactured materials, especially at high temperature (1073 K). For both materials at room temperature, the compressive strength was over 3 GPa. The stress-strain curves were observed to assume a different course for the matrix material and composite material, including differences in the maximum plastic flow stress depending on the test temperature. The brittle-to-ductile transition temperature was determined to be above 873 K. The research has revealed differences in the physical, mechanical and tribological properties of the produced sinters. However, the differences favourable for the composite were mostly the result of the addition of TiB2 ceramic particles uniformly distributed on grain boundaries.

6.
Materials (Basel) ; 13(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481678

ABSTRACT

In this study, four composites with different ZrB2 content were made by the Spark Plasma Sintering (SPS/FAST) technique. The sintering process was carried out at 1373 K for 5 min under an argon atmosphere. The effect of ZrB2 reinforcing phase content on the density, microstructure, and mechanical and tribological properties of composites was investigated. The results were compared with experimental data obtained for 316L austenitic stainless steel without the reinforcing phase. The results showed that the ZrB2 content significantly affected the tested properties. With the increasing content of the ZrB2 reinforcing phase, there was an increase in the Young's modulus and hardness and an improvement in the abrasive wear resistance of sintered composites. In all composites, new fine precipitates were formed and distributed in the steel matrix and along the grain boundaries. Microstructural analysis (Scanning Electron Microscopy (SEM), Wavelength Dispersive Spectroscopy (WDS)) has revealed that the fine precipitates chromium contained chromium as well as boron.

SELECTION OF CITATIONS
SEARCH DETAIL
...