Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Pathol ; 147(6): 623-631, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28505220

ABSTRACT

OBJECTIVES: A report on the multicenter evaluation of the Bruker MALDI Biotyper CA System (MBT-CA; Bruker Daltonics, Billerica, MA) for the identification of clinically important bacteria and yeasts. METHODS: In total, 4,399 isolates of medically important bacteria and yeasts were assessed in the MBT-CA. These included 2,262 aerobic gram-positive (AGP) bacteria, 792 aerobic gram-negative (AGN) bacteria 530 anaerobic (AnA) bacteria, and 815 yeasts (YSTs). Three processing methods were assesed. RESULTS: Overall, 98.4% (4,329/4,399) of all bacterial and yeast isolates were correctly identified to the genus and species/species complex level, and 95.7% of isolates were identified with a high degree of confidence. The percentage correctly identified and the percentage identified correctly with a high level of confidence, respectively, were as follows: AGP bacteria (98.6%/96.5%), AGN bacteria (98.5%/96.8%), AnA bacteria (98.5%/97.4%), and YSTs (97.8%/87.6%). The extended direct transfer method was only minimally superior to the direct transfer method for bacteria (89.9% vs 86.8%, respectively) but significantly superior for yeast isolates (74.0% vs 48.9%, respectively). CONCLUSIONS: The Bruker MALDI Biotyper CA System accurately identifies most clinically important bacteria and yeasts and has optional processing methods to improve isolate characterization.


Subject(s)
Bacteria/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Yeasts/isolation & purification , Bacterial Typing Techniques , Humans , Mycological Typing Techniques , Reproducibility of Results , Software
2.
PLoS One ; 10(11): e0141350, 2015.
Article in English | MEDLINE | ID: mdl-26529504

ABSTRACT

The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.


Subject(s)
Bacterial Typing Techniques , Gram-Negative Aerobic Bacteria/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Bacterial Typing Techniques/instrumentation , Bacterial Typing Techniques/methods , Gram-Negative Aerobic Bacteria/genetics , Humans , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...