Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Scand J Med Sci Sports ; 34(6): e14675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864455

ABSTRACT

BACKGROUND: Although individuals with anterior cruciate ligament reconstruction (ACLR) are at high risk for posttraumatic osteoarthritis, mechanisms underlying the relationship between running and knee cartilage health remain unclear. OBJECTIVE: We aimed to investigate how 30 min of running influences femoral cartilage thickness and composition and their relationships with running biomechanics in patients with ACLR and controls. METHODS: Twenty patients with ACLR (time post-ACLR: 14.6 ± 6.1 months) and 20 matched controls participated in the study. A running session required both groups to run for 30 min at a self-selected speed. Before and after running, we measured femoral cartilage thickness via ultrasound imaging. A MRI session consisted of T2 mapping. RESULTS: The ACLR group showed longer T2 relaxation times in the medial femoral condyle at resting compared with the control group (central: 51.2 ± 16.6 vs. 34.9 ± 13.2 ms, p = 0.006; posterior: 50.2 ± 10.1 vs. 39.8 ± 7.4 ms, p = 0.006). Following the run, the ACLR group showed greater deformation in the medial femoral cartilage than the control group (0.03 ± 0.01 vs. 0.01 ± 0.01 cm, p = 0.001). Additionally, the ACLR group showed significant negative correlations between resting T2 relaxation time in the medial femoral condyle and vertical impulse (standardized regression coefficients = -0.99 and p = 0.004) during running. CONCLUSIONS: Our findings suggest that those who are between 6 and 24 months post-ACLR have degraded cartilage composition and their cartilage deforms more due to running vGRF.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Cartilage, Articular , Femur , Magnetic Resonance Imaging , Running , Humans , Cartilage, Articular/diagnostic imaging , Male , Biomechanical Phenomena , Female , Femur/diagnostic imaging , Adult , Running/physiology , Young Adult , Case-Control Studies , Ultrasonography , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Knee Joint/diagnostic imaging , Knee Joint/physiology
2.
Med Sci Sports Exerc ; 56(6): 1108-1117, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38294822

ABSTRACT

PURPOSE: Unaccustomed eccentric (ECC) exercise evokes exercise-induced muscle damage (EIMD). Soreness, strength loss, and serum creatine kinase (CK) are often used to quantify EIMD severity. However, changes in these markers are not fully understood mechanistically. To test the hypothesis that muscle damage markers are associated with unique molecular processes, we correlated gene expression responses with variation in each marker post-ECC. METHODS: Vastus lateralis biopsies were collected from 35 young men 3 h post-ECC (10 sets of 10 maximal eccentric contractions; contralateral leg [CON] as control). Maximal isometric strength, soreness, and serum CK activity were assessed 24 h preexercise and every 24 h for 5 d post-ECC. Strength was also measured 10 min post-ECC. Over the 5 d after ECC, average peak strength loss was 51.5 ± 20%; average soreness increased from 0.9 ± 1.9 on a 100-mm visual analog scale to 39 ± 19; serum CK increased from 160 ± 130 to 1168 ± 3430 U·L -1 . Muscle RNA was used to generate gene expression profiles. Partek Genomics Suite correlated peak values of soreness, strength loss, and CK post-ECC with gene expression in ECC (relative to paired CON) using Pearson linear correlation ( P < 0.05) and repeated-measures ANOVA used to detect influence of ECC. RESULTS: After ECC, 2677 genes correlated with peak soreness, 3333 genes with peak strength loss, and 3077 genes with peak CK. Less than 1% overlap existed across all markers (16/9087). Unique genes included 2346 genes for peak soreness, 3032 genes for peak strength loss, and 2937 genes for peak CK. CONCLUSIONS: The largely unique molecular pathways associated with common indirect markers of EIMD indicate that each marker of "damage" represents unique mechanistic processes.


Subject(s)
Biomarkers , Creatine Kinase , Muscle Strength , Myalgia , Humans , Male , Myalgia/genetics , Creatine Kinase/blood , Young Adult , Biomarkers/blood , Quadriceps Muscle/metabolism , Adult , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/injuries , Exercise/physiology , Gene Expression
3.
Exp Physiol ; 109(2): 165-174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38189630

ABSTRACT

The Tour Divide (TD) is a 4385 km ultra-endurance bicycle race that follows the continental divide from Canada to Mexico. In this case study, we performed a comprehensive molecular and physiological profile before and after the completion of the TD. Assessments were performed 35 days before the start (Pre-TD) and ∼36 h after the finish (Post-TD). Total energy expenditure was assessed during the first 9 days by doubly labelled water (2 H2 18 O), abdominal and leg tissue volumes via MRI, and graded exercise tests to quantify fitness and substrate preference. Vastus lateralis muscle biopsies were taken to measure mitochondrial function via respirometry, and vascular function was assessed using Doppler ultrasound. The 47-year-old male subject took 16 days 7 h 45 min to complete the route. He rode an average of 16.8 h/day. Neither maximal O2 uptake nor maximal power output changed pre- to post-TD. Measurement of total energy expenditure and dietary recall records suggested maintenance of energy balance, which was supported by the lack of change in body weight. The subject lost both appendicular and trunk fat mass and gained leg lean mass pre- to post-TD. Skeletal muscle mitochondrial and vascular endothelial function decreased pre- to post-TD. Overall, exercise performance was maintained despite reductions in muscle mitochondrial and vascular endothelial function post-TD, suggesting a metabolic reserve in our highly trained athlete.


Subject(s)
Bicycling , Physical Endurance , Male , Humans , Middle Aged , Physical Endurance/physiology , Exercise/physiology , Energy Metabolism , Muscle, Skeletal/physiology
4.
Int J Hyperthermia ; 40(1): 2205066, 2023.
Article in English | MEDLINE | ID: mdl-37106474

ABSTRACT

The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Mitochondria/metabolism , Muscle, Skeletal/physiology , Mitochondria, Muscle/metabolism , Heat-Shock Response
5.
Exp Gerontol ; 169: 111974, 2022 11.
Article in English | MEDLINE | ID: mdl-36228835

ABSTRACT

Skeletal muscle injury in aged rodents is characterized by an asynchronous infiltration of pro- and anti-inflammatory macrophage waves, leading to improper and incomplete regeneration. It is unclear whether this aberration also occurs in aged human muscle. In this study, we quantified the macrophage responses in a human model of muscle damage and regeneration induced by electrical stimulation in 7 young and 21 older adults. At baseline, total resident macrophage (CD68+/DAPI+) content was not different between young and old subjects, but pro-inflammatory (CD206-/CD68+/DAPI+) macrophage content was lower in the old. Following damage, muscle Infiltration of CD206-/CD68+/DAPI+ macrophages was lower in old relative to young subjects. Further, only the increase in CD206-/CD68+ macrophages correlated with the change in muscle satellite cell content. Our data show that older individuals have a compromised macrophage response during muscle regeneration, pointing to an altered inflammatory response as a potential mechanism for reduced muscle regenerative efficacy in aged humans.


Subject(s)
Macrophages , Muscle, Skeletal , Humans , Aged , Macrophages/physiology , Muscle, Skeletal/physiology , Aging , Regeneration , Wound Healing
6.
J Proteome Res ; 21(11): 2703-2714, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36099490

ABSTRACT

The synthesis of new proteins and the degradation of old proteins in vivo can be quantified in serial samples using metabolic isotope labeling to measure turnover. Because serial biopsies in humans are impractical, we set out to develop a method to calculate the turnover rates of proteins from single human biopsies. This method involved a new metabolic labeling approach and adjustments to the calculations used in previous work to calculate protein turnover. We demonstrate that using a nonequilibrium isotope enrichment strategy avoids the time dependent bias caused by variable lag in label delivery to different tissues observed in traditional metabolic labeling methods. Turnover rates are consistent for the same subject in biopsies from different labeling periods, and turnover rates calculated in this study are consistent with previously reported values. We also demonstrate that by measuring protein turnover we can determine where proteins are synthesized. In human subjects a significant difference in turnover rates differentiated proteins synthesized in the salivary glands versus those imported from the serum. We also provide a data analysis tool, DeuteRater-H, to calculate protein turnover using this nonequilibrium metabolic 2H2O method.


Subject(s)
Isotopes , Proteins , Humans , Isotope Labeling/methods , Proteins/metabolism , Proteolysis , Biopsy/methods
7.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955635

ABSTRACT

AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.


Subject(s)
Fatty Acids/metabolism , Mitochondria, Muscle , Mitochondria , Citrate (si)-Synthase/metabolism , Hot Temperature/therapeutic use , Humans , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/metabolism , Oxidation-Reduction
8.
J Physiol ; 599(20): 4581-4596, 2021 10.
Article in English | MEDLINE | ID: mdl-34487346

ABSTRACT

Limb disuse has profound negative consequences on both vascular and skeletal muscle health. The purpose of this investigation was to determine whether repeated application of passive heat, applied to the knee extensor muscles, could mitigate the detrimental effects of limb disuse on vascular function. This was a randomized, single-blinded placebo controlled trial. Twenty-one healthy volunteers (10 women, 11 men) underwent 10 days of unilateral lower limb immobilization and were randomized to receive either a daily 2 h sham (Imm) or heat treatment (Imm+H) using pulsed shortwave diathermy. Vascular function was assessed with Doppler ultrasound of the femoral artery and the passive leg movement technique. Biopsies of the vastus lateralis were also collected before and after the intervention. In Imm, femoral artery diameter (FAD) and PLM-induced hyperaemia (HYP) were reduced by 7.3% and 34.3%, respectively. Changes in both FAD (4% decrease; P = 0.0006) and HYP (7.8% increase; P = 0.003) were significantly attenuated in Imm+H. Vastus lateralis capillary density was not altered in either group. Immobilization significantly decreased expression of vascular endothelial growth factor (P = 0.006) and Akt (P = 0.001), and increased expression of angiopoietin 2 (P = 0.0004) over time, with no differences found between groups. Immobilization also upregulated elements associated with remodelling of the extracellular matrix, including matrix metalloproteinase 2 (P = 0.0046) and fibronectin (P = 0.0163), with no differences found between groups. In conclusion, limb immobilization impairs vascular endothelial function, but daily muscle heating via diathermy is sufficient to counteract this adverse effect. These are the first data to indicate that passive muscle heating mitigates disuse-induced vascular dysfunction. KEY POINTS: Limb disuse can be unavoidable for many of reasons (i.e. injury, bed rest, post-surgery), and can have significant adverse consequences for muscular and vascular health. We tested the hypothesis that declines in vascular function that result from lower limb immobilization could be mitigated by application of passive heat therapy. This report shows that 10 days of limb immobilization significantly decreases resistance artery diameter and vascular function, and that application of passive heat to the knee extensor muscle group each day for 2 h per day is sufficient to attenuate these declines. Additionally, muscle biopsy analyses showed that 10 days of heat therapy does not alter capillary density of the muscle, but upregulates multiple factors indicative of a vascular remodelling response. Our data demonstrate the utility of passive heat as a therapeutic tool to mitigate losses in lower limb vascular function that occur from disuse.


Subject(s)
Heating , Matrix Metalloproteinase 2 , Female , Humans , Immobilization , Male , Muscle Strength , Muscle, Skeletal , Muscular Atrophy/pathology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/pathology , Vascular Endothelial Growth Factor A
9.
Med Sci Sports Exerc ; 53(11): 2363-2373, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34107508

ABSTRACT

PURPOSE: Very little research has investigated the effects of ultraendurance exercise on the bioenergetic status of muscle. The primary objective of this case study was to characterize the changes that occur in skeletal muscle mitochondria in response to a 100-km ultramarathon in monozygotic twins. A second objective was to determine whether mitochondrial function is altered by consuming a periodized low-carbohydrate, high-fat diet during training compared with a high-carbohydrate diet. METHODS: One pair of male monozygotic twins ran 100 km on treadmills after 4 wk of training on either a high-carbohydrate or periodized low-carbohydrate, high-fat diet. Muscle biopsies were collected 4 wk before the run, as well as 4 and 52 h postrun. Blood draws were also performed immediately before as well as 4 and 52 h after the run. RESULTS: Four hours postrun, respiratory capacity, citrate synthase activity, and mitochondrial complex protein content were decreased. Two days later, both twins showed signs of rapid recovery in several of these measures. Furthermore, blood levels of creatine phosphokinase, C-reactive protein, and aspartate transaminase were elevated 4 h after the run but partially recovered 2 d later. CONCLUSION: Although there were some differences between the twins, the primary finding is that there is significant mitochondrial impairment induced by running 100 km, which rapidly recovers within 2 d. These results provide ample rationale for future investigations of the effects of ultraendurance activity on mitochondrial function.


Subject(s)
Marathon Running/physiology , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Twins, Monozygotic , Aspartate Aminotransferases/metabolism , C-Reactive Protein/metabolism , Creatine Kinase/blood , Diet, Carbohydrate Loading , Diet, High-Protein Low-Carbohydrate , Energy Metabolism , Humans , Male , Oxygen Consumption , Physical Conditioning, Animal , Young Adult
10.
J Sport Rehabil ; 30(4): 538-544, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33120356

ABSTRACT

CONTEXT: Low current intensity iontophoresis treatments have increased skin perfusion over 700% from baseline potentially altering drug clearance from or diffusion to the targeted area. OBJECTIVE: To determine the effects of a preceding 10-minute ice massage on subcutaneous dexamethasone sodium phosphate (Dex-P) concentration and skin perfusion during and after a 4-mA iontophoresis treatment. DESIGN: Controlled laboratory study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-four participants (male = 12, female = 12; age = 25.6 [4.5] y, height = 173.9 [8.51] cm, mass = 76.11 [16.84] kg). INTERVENTION(S): Participants were randomly assigned into 2 groups: (1) pretreatment 10-minute ice massage and (2) no pretreatment ice massage. Treatment consisted of an 80-mA·minute (4 mA, 20 min) Dex-P iontophoresis treatment. Microdialysis probes (3 mm deep in the forearm) were used to assess Dex-P, dexamethasone (Dex), and its metabolite (Dex-Met) concentrations. Skin perfusion was measured using laser Doppler flowmetry. MAIN OUTCOME MEASURE(S): Microdialysis samples were collected at baseline, at conclusion of treatment, and every 20 minutes posttreatment for 60 minutes. Samples were analyzed to determine Dex-Total (Dex-Total = Dex-P + Dex + Dex-Met). Skin perfusion was calculated as a percentage change from baseline. A mixed-design analysis of variance was used to determine Dex-Total and skin perfusion difference between groups overtime. RESULTS: There was no difference between groups (P = .476), but [Dex-Total] significantly increased over the course of the iontophoresis and posttreatment time (P < .001). Dex-P was measured in 18 of 24 participants with a mean concentration of 0.67 (1.09) µg/mL. Skin perfusion was significantly greater in the no ice treatment group (P = .002). Peak skin perfusion reached 27.74% (47.49%) and 117.39% (103.45%) from baseline for the ice and no ice groups, respectively. CONCLUSIONS: Ice massage prior to iontophoresis does not alter the tissue [Dex-Total] even with less skin perfusion.


Subject(s)
Cryotherapy/methods , Dexamethasone/analogs & derivatives , Glucocorticoids/administration & dosage , Iontophoresis/methods , Massage/methods , Adult , Analysis of Variance , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Female , Glucocorticoids/pharmacokinetics , Humans , Ice , Male , Microdialysis , Skin/metabolism , Time Factors
11.
Int J Mol Sci ; 21(17)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872407

ABSTRACT

OBJECTIVE: The rampant growth of obesity worldwide has stimulated explosive research into human metabolism. Energy expenditure has been shown to be altered by diets differing in macronutrient composition, with low-carbohydrate, ketogenic diets eliciting a significant increase over other interventions. The central aim of this study was to explore the effects of the ketone ß-hydroxybutyrate (ßHB) on mitochondrial bioenergetics in adipose tissue. METHODS: We employed three distinct systems-namely, cell, rodent, and human models. Following exposure to elevated ßHB, we obtained adipose tissue to quantify mitochondrial function. RESULTS: In every model, ßHB robustly increased mitochondrial respiration, including an increase of roughly 91% in cultured adipocytes, 113% in rodent subcutaneous adipose tissue (SAT), and 128% in human SAT. However, this occurred without a commensurate increase in adipose ATP production. Furthermore, in cultured adipocytes and rodent adipose, we quantified and observed an increase in the gene expression involved in mitochondrial biogenesis and uncoupling status following ßHB exposure. CONCLUSIONS: In conclusion, ßHB increases mitochondrial respiration, but not ATP production, in mammalian adipocytes, indicating altered mitochondrial coupling. These findings may partly explain the increased metabolic rate evident in states of elevated ketones, and may facilitate the development of novel anti-obesity interventions.


Subject(s)
3-Hydroxybutyric Acid/administration & dosage , Adipocytes/cytology , Mitochondria/metabolism , Subcutaneous Fat/metabolism , 3-Hydroxybutyric Acid/pharmacology , 3T3-L1 Cells , Adenosine Triphosphate/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adult , Animals , Cells, Cultured , Energy Metabolism/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , Male , Mice , Mitochondria/drug effects , Rats , Subcutaneous Fat/drug effects
12.
J Appl Physiol (1985) ; 129(2): 353-365, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32644914

ABSTRACT

Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.


Subject(s)
Heating , Resistance Training , Cold Temperature , Exercise , Humans , Immersion , Muscle, Skeletal , Muscles , Water
13.
J Strength Cond Res ; 34(4): 1123-1132, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30399118

ABSTRACT

Magoffin, RD, Parcell, AC, Hyldahl, RD, Fellingham, GW, Hopkins, JT, and Feland, JB. Whole-body vibration as a warm-up before exercise-induced muscle damage on symptoms of delayed-onset muscle soreness in trained subjects. J Strength Cond Res 34(4): 1123-1132, 2020-There is no clear scientific evidence that whole-body vibration (WBV) used as a warm-up before performing eccentric exercise mitigates delayed-onset muscle soreness (DOMS) and speeds strength loss recovery. These benefits were observed primarily in nonresistance-trained individuals. The aim of this study was to determine whether WBV could mitigate soreness and expedite strength recovery for resistance-trained individuals when used as a warm-up before eccentric exercise. Thirty resistance-trained males completed 300 maximal eccentric contractions of the quadriceps after warming up with (WBV) or without (CON) WBV. Both CON and WBV experienced significant isometric (26.3 and 30.2%, respectively) and dynamic (50.9 and 46.4%, respectively) strength loss immediately after exercise. Isometric strength was significantly depressed after 24 hours in the CON group (8.2% p < 0.02), but not in the WBV group (5.9% p = 0.7). Isometric strength was no longer significantly depressed after 48 hours in the CON group (6.1% p < 0.07) or the WBV group (4.1% p = 0.20). Dynamic strength was significantly decreased in both the CON and WBV groups at 24 hours (17.7% p < 0.001 and 15.5% p < 0.001, respectively) and 48 hours (17.1% p < 0.01 and 13.6% p < 0.002), but only significant for the CON at 1 week after exercise (8.6% p = 0.05). Pain as measured by a visual analog scale was significant in both groups at 24 and 48 hours after exercise, but WBV experienced significantly less soreness than the CON group after 24 hours (28 vs. 46 mm p < 0.01, respectively) and 48 hours (38 vs. 50 mm p < 0.01). Pain pressure threshold increased significantly in both groups, but there was no difference between groups. These results suggest the use of WBV before eccentric exercise mildly mitigates DOMS in trained individuals. Application of WBV can function as a quick mode of warm-up before resistance training and can decrease pain perception from DOMS. This may be beneficial to athletes undergoing a heavy strength training phase where DOMS is likely.


Subject(s)
Myalgia/prevention & control , Resistance Training/methods , Vibration , Warm-Up Exercise/physiology , Adolescent , Adult , Athletes , Female , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Pain Threshold , Physical Therapy Modalities , Quadriceps Muscle/physiology , Time Factors , Young Adult
14.
Med Sci Sports Exerc ; 52(6): 1280-1293, 2020 06.
Article in English | MEDLINE | ID: mdl-31876672

ABSTRACT

PURPOSE: The purpose of this investigation was to characterize skeletal muscle T-cell accumulation after contraction-induced muscle damage and test the hypothesis that T cells contribute to postdamage muscle protection (i.e., the repeated bout effect) in a way reminiscent of their role in adaptive immunity. METHODS: In vivo lengthening contractions were used to model the repeated bout effect and contralateral repeated bout effect in rats. Intramuscular T-cell subsets were characterized by flow cytometry after single and repeated bouts of lengthening contractions, and an adoptive T-cell transfer experiment was done to test whether T cells from muscle damage-experienced rats can confer protection from injury to damage-naive rats. RESULTS: Electrically stimulated lengthening contractions elicited the repeated bout effect, but not the contralateral repeated bout effect. Although leukocytes (CD45+) were scarce in undamaged muscle (2.1% of all cells), substantially more (63% of all cells) were observed after a single bout of lengthening contractions. Within the leukocyte population were several subsets of T cells, including conventional CD4+, CD8+, memory, and regulatory T cells. In contrast, a minimal increase in T cells was observed after a second bout of lengthening contractions. Conventional CD4+ T cells (FoxP3-) were the most abundant subset in muscle after lengthening contractions. Adoptive T-cell transfer from damage-experienced rats did not confer protection to damage-naive recipient rats. CONCLUSIONS: The robust T-cell accumulation, particularly the CD4 subset, after contraction-induced damage suggests a role for these cells in muscle repair and adaptation to muscle damaging contractions. Moreover, T cells are unlikely to mediate the protective adaptations of the repeated bout effect in a manner similar to their role in adaptive immunity.


Subject(s)
Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Physical Conditioning, Animal/physiology , T-Lymphocytes/physiology , Adaptation, Physiological , Adoptive Transfer , Animals , Electric Stimulation , Lymphocyte Count , Male , Muscle Contraction , Muscle, Skeletal/pathology , Rats, Inbred Lew , T-Lymphocyte Subsets
15.
FASEB J ; 33(9): 10353-10368, 2019 09.
Article in English | MEDLINE | ID: mdl-31208207

ABSTRACT

The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.


Subject(s)
Aging/pathology , Exercise/physiology , Macrophage Activation/physiology , Macrophages/pathology , Muscle, Skeletal/physiopathology , Myoblasts/pathology , Adult , Aged , Cells, Cultured , Female , Humans , Male , Muscle, Skeletal/injuries , Phenotype , Young Adult
16.
J Appl Physiol (1985) ; 127(1): 47-57, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31046520

ABSTRACT

Skeletal muscle immobilization leads to atrophy, decreased metabolic health, and substantial losses in function. Animal models suggest that heat stress can provide protection against atrophy in skeletal muscle. This study investigated the effects of daily heat therapy on human skeletal muscle subjected to 10 days of immobilization. Muscle biopsies were collected, and MRIs were analyzed from the vastus lateralis of 23 healthy volunteers (11 women, 12 men) before and after either 10 days of immobilization with a daily sham treatment (Imm) or with a targeted, daily 2-h heat treatment using pulsed shortwave diathermy (Imm + H). Diathermy increased intramuscular temperature 4.2 ± 0.29°C (P < 0.0001), with no change during sham treatment. As a result, heat shock protein (HSP)70 and HSP90 increased (P < 0.05) following Imm + H (25 ± 6.6 and 20 ± 7.4%, respectively) but were unaltered with Imm only. Heat treatment prevented the immobilization-induced loss of coupled (-27 ± 5.2% vs. -8 ± 6.0%, P = 0.0041) and uncoupled (-25 ± 7.0% vs. -10 ± 3.9%, P = 0.0302) myofiber respiratory capacity. Likewise, heat treatment prevented the immobilization-induced loss of proteins associated with all five mitochondrial respiratory complexes (P < 0.05). Furthermore, decreases in muscle cross-sectional area following Imm were greater than Imm + H at both the level of the whole muscle (-7.6 ± 0.96% vs. -4.5 ± 1.09%, P = 0.0374) and myofiber (-10.8 ± 1.52% vs. -5.8 ± 1.49%, P = 0.0322). Our findings demonstrate that daily heat treatments, applied during 10 days of immobilization, prevent the loss of mitochondrial function and attenuate atrophy in human skeletal muscle. NEW & NOTEWORTHY Limb immobilization results in substantial decreases in skeletal muscle size, function, and metabolic capacity. To date, there are few, if any, interventions to prevent the deleterious effects of limb immobilization on skeletal muscle health. Heat stress has been shown to elicit a stress response, resulting in increased heat shock protein expression and improved mitochondrial function. We show that during 10 days of lower-limb immobilization in humans, daily exposure to heat stress maintains mitochondrial respiratory capacity and attenuates atrophy in skeletal muscle. Our findings suggest that heat stress may serve as an effective therapeutic strategy to attenuate the decreases of muscle mass and metabolic function that accompany periods of disuse.


Subject(s)
Heat-Shock Response/physiology , Immobilization/physiology , Mitochondria, Muscle/physiology , Mitochondria/physiology , Muscular Atrophy/physiopathology , Quadriceps Muscle/physiology , Adult , Female , Hot Temperature , Humans , Male , Muscle Strength/physiology , Young Adult
17.
Front Physiol ; 9: 768, 2018.
Article in English | MEDLINE | ID: mdl-29973887

ABSTRACT

Skeletal muscle is prone to damage from a range of stimuli, and initiates a robust repair process that requires the participation of immune cells. Among the more well characterized immune cells involved in muscle repair are those of the myeloid lineage, including neutrophils, macrophages, monocytes, and eosinophils. More recently, studies have begun to elucidate the role of the lymphoid-derived immune cells, most notably T lymphocytes (T-cells), in the complex processes of muscle repair. Though T-cells have been traditionally been associated with pathological degeneration of skeletal muscle in disease, recent studies show that T-cells are instrumental in the repair/regeneration process following severe muscle damage in mice. Furthermore, a few studies using basic immunohistochemical assays have shown that T-cells accumulate in human skeletal muscle in the days following contraction-induced muscle damage. The functional significance of T-cells in the repair and adaptation process following contraction-induce muscle damage remains uncertain, and is an active area of intense investigation. This mini-review summarizes recent findings on the involvement of T-cells in skeletal muscle repair.

18.
J Appl Physiol (1985) ; 125(5): 1447-1455, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30024339

ABSTRACT

The heat stress response is associated with several beneficial adaptations that promote cell health and survival. Specifically, in vitro and animal investigations suggest that repeated exposures to a mild heat stress (~40°C) elicit positive mitochondrial adaptations in skeletal muscle comparable to those observed with exercise. To assess whether such adaptations translate to human skeletal muscle, we produced local, deep tissue heating of the vastus lateralis via pulsed shortwave diathermy in 20 men and women ( n = 10 men; n = 10 women). Diathermy increased muscle temperature by 3.9°C within 30 min of application. Immediately following a single 2-h heating session, we observed increased phosphorylation of AMP-activated protein kinase and ERK1/2 but not of p38 MAPK or JNK. Following repeated heat exposures (2 h daily for 6 consecutive days), we observed a significant cellular heat stress response, as heat shock protein 70 and 90 increased 45% and 38%, respectively. In addition, peroxisome proliferator-activated receptor gamma, coactivator-1 alpha and mitochondrial electron transport protein complexes I and V expression were increased after heating. These increases were accompanied by augmentation of maximal coupled and uncoupled respiratory capacity, measured via high-resolution respirometry. Our data provide the first evidence that mitochondrial adaptation can be elicited in human skeletal muscle in response to repeated exposures to mild heat stress. NEW & NOTEWORTHY Heat stress has been shown to elicit mitochondrial adaptations in cell culture and animal research. We used pulsed shortwave diathermy to produce deep tissue heating and explore whether beneficial mitochondrial adaptations would translate to human skeletal muscle in vivo. We report, for the first time, positive mitochondrial adaptations in human skeletal muscle following recurrent heat stress. The results of this study have clinical implications for many conditions characterized by diminished skeletal muscle mitochondrial function.


Subject(s)
Adaptation, Physiological , Heat-Shock Response , Mitochondria, Muscle/metabolism , Female , Healthy Volunteers , Humans , MAP Kinase Signaling System , Male , Muscle, Skeletal/metabolism , Organelle Biogenesis , Young Adult
19.
PLoS One ; 13(6): e0198611, 2018.
Article in English | MEDLINE | ID: mdl-29897957

ABSTRACT

BACKGROUND: Recent studies have highlighted the JAK/STAT signaling pathway in the regulation of muscle satellite cell behavior. Herein we report preclinical studies designed to characterize the effects of a novel JAK/STAT inhibitor on plantar flexor skeletal muscle function, morphology, and satellite cell content. METHODS: The compound, SGI-1252, was administered orally (400mg/kg) in a 10% dextrose solution to wild type mice (n = 6) 3 times per week for 8 weeks. A control group (n = 6) received only the dextrose solution. RESULTS: SGI-1252 was well tolerated, as animals displayed similar weight gain over the 8-week treatment period. Following treatment, fatigue in the gastrocnemius-soleus-plantaris complex was greater in the SGI-1252 mice during a 300 second tetanic contraction bout (p = 0.035), though both the rate of fatigue and maximal force production were similar. SGI-1252 treated mice had increased type II myofiber cross-sectional area (1434.8 ± 225.4 vs 1754.7 ± 138.5 µm2), along with an increase in wet muscle mass (125.45 ± 5.46 vs 139.6 ± 12.34 mg, p = 0.032) of the gastrocnemius relative to vehicle treated mice. SGI-1252 treatment reduced gastrocnemius STAT3 phosphorylation 53% (94.79 ± 45.9 vs 44.5 ± 6.1 MFI) and significantly increased the concentration of Pax7+ satellite cells (2589.2 ± 105.5 vs 2859.4 ± 177.5 SC/mm3) in the gastrocnemius. SGI-1252 treatment suppressed MyoD (p = 0.013) and Myogenin (p<0.0001) expression in human primary myoblasts, resulting in reduced myogenic differentiation (p = 0.039). CONCLUSIONS: Orally delivered SGI-1252 was well tolerated, attenuates skeletal muscle STAT3 activity, and increases satellite cell content in mouse gastrocnemius muscle, likely by inhibiting myogenic progression.


Subject(s)
Diamines/pharmacology , Janus Kinases/metabolism , Muscle, Skeletal/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , STAT Transcription Factors/metabolism , Administration, Oral , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Drug Administration Schedule , Drug Evaluation, Preclinical , Humans , Janus Kinases/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Myogenin/metabolism , PAX7 Transcription Factor/metabolism , Phosphorylation/drug effects , STAT Transcription Factors/antagonists & inhibitors , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/metabolism
20.
Physiol Rep ; 6(8): e13689, 2018 04.
Article in English | MEDLINE | ID: mdl-29696819

ABSTRACT

CXCL10 is a chemokine for activated and memory T cells with many important immunological functions. We recently found that CXCL10 is upregulated in human muscle following contraction-induced damage. No information is available on the role of CXCL10 in the context of muscle damage or repair. In this study, we confirm that CXCL10 is elevated in human muscle at 2 and 3 days following damage and perform cell culture and animal studies to examine the role of CXCL10 in muscle repair. CXCL10 did not impact proliferation rates of human primary myoblasts but it did promote myogenic differentiation in vitro, suggesting a possible direct impact on muscle regeneration. To test if CXCL10 was dispensable for effective muscle regeneration in vivo, we measured functional and histological markers of muscle repair out to 14 days postmuscle injury caused by a myotoxin in wild-type (WT) mice and CXCL10 knockout (KO) mice. Between genotypes, no significant differences were found in loss or restoration of in situ muscle force, cross-sectional area of newly formed myofibers, or the number of embryonic myosin heavy chain-positive myofibers. In addition, KO animals were not deficient in T-cell accumulation in the damaged muscle following injury. Gene expression of the other two ligands (CXCL9 and 11) that bind to the same receptor as CXCL10 were also elevated in the damaged muscle of KO mice. Thus, other ligands may have compensated for the lack of CXCL10 in the KO mice. We conclude that CXCL10 is not necessary for effective muscle regeneration.


Subject(s)
Chemokine CXCL10/metabolism , Muscle, Skeletal/metabolism , Regeneration/physiology , Up-Regulation/physiology , Adult , Cell Differentiation/physiology , Female , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/injuries , Myoblasts/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...