Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 334(6057): 773-6, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21998255

ABSTRACT

Interferometers with atomic ensembles are an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to 10(4) pair-correlated atoms with an interferometric sensitivity -1.61(-1.1)(+0.98) decibels beyond the shot noise limit. Our proof-of-principle results point the way toward a new generation of atom interferometers.

2.
Phys Rev Lett ; 104(19): 195303, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20866973

ABSTRACT

Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter.

3.
Phys Rev Lett ; 105(12): 120501, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20867618

ABSTRACT

The concepts of separability, entanglement, spin squeezing, and the Heisenberg limit are central in the theory of quantum-enhanced metrology. In the current literature, these are well established only in the case of linear interferometers operating with input quantum states of a known fixed number of particles. This manuscript generalizes these concepts and extends the quantum phase estimation theory by taking into account classical and quantum fluctuations of the particle number. Our analysis concerns most of the current experiments on precision measurements where the number of particles is known only on average.

4.
Phys Rev Lett ; 103(19): 195302, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20365935

ABSTRACT

We analyze the spinor dynamics of a 87Rb F=2 condensate initially prepared in the m(F) = 0 Zeeman sublevel. We show that this dynamics, characterized by the creation of correlated atomic pairs in m(F) = +/-1, presents an intriguing multiresonant magnetic-field dependence induced by the trap inhomogeneity. This dependence is directly linked to the most unstable Bogoliubov spin excitations of the initial m(F) = 0 condensate, showing that, in general, even a qualitative understanding of the pair-creation efficiency in a spinor condensate requires a careful consideration of the confinement.

5.
Phys Rev Lett ; 100(20): 205302, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518551

ABSTRACT

The compensation of quadratic Zeeman effect and trap energy in high-spin fermions is shown to lead to resonances in the spin-changing collisions that are typically absent in spinor condensates and spin-1/2 fermions. We study these resonances in lattice fermions, showing that they permit the targeting of a particular spin-changing channel while suppressing the rest and the creation of magnetically insensitive superpositions of many-body states with entangled spin and trap degrees of freedom. Finally, the intersite tunneling may lead to a quantum phase transition described by a quantum Ising model.

6.
Phys Rev Lett ; 99(13): 130504, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930568

ABSTRACT

We propose a unifying approach to the separability problem using covariance matrices of locally measurable observables. From a practical point of view, our approach leads to strong entanglement criteria that allow us to detect the entanglement of many bound entangled states in higher dimensions and which are at the same time necessary and sufficient for two qubits. From a fundamental perspective, our approach leads to insights into the relations between several known entanglement criteria--such as the computable cross-norm and local uncertainty criteria--as well as their limitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...