Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem Lett ; : 7424-7429, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996192

ABSTRACT

Mycosporine glycine (MyG) was produced by the fermentation of a purposely engineered bacterial strain and isolated from this sustainable source. The ultrafast spectroscopy of MyG was then investigated in its native, zwitterionic form (MyGzwitter), via femtosecond transient electronic absorption spectroscopy. Complementary nonadiabatic (NAD) simulations suggest that, upon photoexcitation to the lowest excited singlet state (S1), MyGzwitter undergoes efficient nonradiative decay to repopulate the electronic ground state (S0). We propose an initial ultrafast ring-twisting mechanism toward an S1/S0 conical intersection, followed by internal conversion to S0 and subsequent vibrational cooling. This study illuminates the workings of the archetype mycosporine, providing photoprotection, in the UV-B range, to organisms such as corals, macroalgae, and cyanobacteria. This study also contributes to our growing understanding of the photoprotection mechanisms of life.

2.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630405

ABSTRACT

A natural UV-absorbing chromophore extracted from sphagnum mosses, sphagnic acid, is proposed as a new natural support to chemical UV filters for use in cosmetic applications. Sphagnic acid is structurally related to the cinnamate family of molecules, known for their strong UV absorption, efficient non-radiative decay, and antioxidant properties. In this study, transient electronic absorption spectroscopy is used, in conjunction with steady-state techniques, to model the photodynamics following photoexcitation of sphagnic acid in different solvent systems. Sphagnic acid was found in each system to relax with lifetimes of ~200 fs and ~1.5 ps before generating a cis-isomer photoproduct. This study helps to elucidate the photoprotective mechanism of a new potential natural support to sunscreens, from a unique plant source.


Subject(s)
Sphagnopsida , Solvents , Antioxidants , Cinnamates , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...