Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(44): 17061-17075, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37871005

ABSTRACT

Nitrogen and phosphorus pollution is of great concern to aquatic life and human well-being. While most of these nutrients are applied to the landscape, little is known about the complex interplay among nutrient applications, transport attenuation processes, and coastal loads. Here, we enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux model (SENSEflux) to simulate the total annual nitrogen and phosphorus loads from the US Great Lakes Basin to the coastline, identify nutrient delivery hotspots, and estimate the relative contributions of different sources and pathways at a high resolution (120 m). In addition to in-stream uptake, the main novelty of this model is that SENSEflux explicitly describes nutrient attenuation through four distinct pathways that are seldom described jointly in other models: runoff from tile-drained agricultural fields, overland runoff, groundwater flow, and septic plumes within groundwater. Our analysis shows that agricultural sources are dominant for both total nitrogen (TN) (58%) and total phosphorus (TP) (46%) deliveries to the Great Lakes. In addition, this study reveals that the surface pathways (sum of overland flow and tile field drainage) dominate nutrient delivery, transporting 66% of the TN and 76% of the TP loads to the US Great Lakes coastline. Importantly, this study provides the first basin-wide estimates of both nonseptic groundwater (TN: 26%; TP: 5%) and septic-plume groundwater (TN: 4%; TP: 2%) deliveries of nutrients to the lakes. This work provides valuable information for environmental managers to target efforts to reduce nutrient loads to the Great Lakes, which could be transferred to other regions worldwide that are facing similar nutrient management challenges.


Subject(s)
Environmental Monitoring , Groundwater , Humans , Phosphorus/analysis , Nutrients , Nitrogen/analysis , Lakes , China
2.
Radiol Case Rep ; 18(11): 3975-3978, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37680660

ABSTRACT

Accidental ingestion of fish bones can potentially lead to serious complications like perforation of the alimentary tract and the formation of abscesses in adjacent organs. Prompt and accurate diagnosis of the etiology of hepatic abscesses is critical to prevent clinical deterioration and poor outcomes. Notably, fish bones can be subtle in imaging studies and erroneously interpreted as calcifications, vessels, or artifacts potentially delaying diagnosis and management. Further complicating medical management, fish bones can be seeded with oral microflora which may not be effectively targeted by empiric antibiotics. Patients presenting with an occult hepatic abscess often have repeated visits to the emergency department with vague symptomology and abdominal pain without recollection of any precipitating events. In this case report, a multidisciplinary approach, including a high index of suspicion applied to CT imaging, was vital in identifying a foreign body within an abscess localized between the greater curvature of the stomach and left liver lobe. The foreign body, mimicking an intraperitoneal calcification, was a fish bone that had transmigrated through the stomach wall into the liver lobe. Once identified, definitive treatment included laparoscopic drainage of the abscess, extraction of the foreign body, and coverage with broad-spectrum antibiotics.

3.
Microbiol Spectr ; 10(4): e0041522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35730960

ABSTRACT

Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gastrointestinal infection risks. Water chemistry data collected during three hydroclimatic seasons from 64 Michigan watersheds were analyzed using seasonal linear regression models with candidate variables including crop and land use proportions, prior precipitation, chemical parameters, and variables related to both wastewater treatment and septic usage. Adaptive least absolute shrinkage and selection operator (LASSO) linear regression with bootstrapping was used to select explanatory variables and estimate coefficients. Regardless of season, wastewater treatment plant and septic system usage were consistently selected in all primary models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related variable selection depended upon season and organism. These results suggest a link between human pollution (e.g., septic systems) and microbial water quality that is dependent on flow regime. IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain insights into fecal contamination sources, drivers, and chemical correlates across seasons for general E. coli and human-specific fecal indicators. Results reaffirmed a link between human-specific sources (e.g., septic systems) and microbial water quality. While the importance of human sources of fecal contamination and fate and transport variables (e.g., precipitation) remain important across seasons, this study provides evidence that fate and transport mechanisms vary with seasonal hydrologic condition and microorganism source. This study contributes to a body of research that informs prioritization of fecal contamination source control and surveillance strategy development to reduce the public health burden of surface water fecal contamination.


Subject(s)
Escherichia coli , Water Microbiology , Environmental Monitoring/methods , Feces/microbiology , Humans , Michigan , Seasons
4.
Water Res ; 219: 118526, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35598465

ABSTRACT

As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and co-occuring variables (e.g., nutrients, sediment runoff) MST can provide a basis for understanding how to effectively remediate water quality. To determine spatial and temporal trends in microbial contamination and correlations between MST and nutrients, water samples (n = 136) were collected between April 2017 and May of 2018 during eight sampling events from 17 sites in 5 mixed-use watersheds. These samples were analyzed for three MST markers (human - B. theta; bovine - CowM2; porcine - Pig2Bac) along with E. coli, nutrients (nitrogen and phosphorus species), and physiochemical paramaters. These water quality variables were then paired with data on land use, streamflow, precipitation and management practices (e.g., tile drainage, septic tank density, tillage practices) to determine if any significant relationships existed between the observed microbial contamination and these variables. The porcine marker was the only marker that was highly correlated (p value <0.05) with nitrogen and phosphorus species in multiple clustering schemes. Significant relationships were also identified between MST markers and variables that demonstrated temporal trends driven by precipitation and spatial trends driven by septic tanks and management practices (tillage and drainage) when spatial clustering was employed.


Subject(s)
Water Microbiology , Water Quality , Animals , Cattle , Environmental Monitoring , Escherichia coli , Feces , Nitrogen , Nutrients , Phosphorus , Swine , Water Pollution/analysis
5.
Sci Total Environ ; 835: 155240, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35460771

ABSTRACT

Understanding agriculturally co-located solar photovoltaic (PV) installation capacity, practices, and preferences is imperative to foster a future where solar power and agriculture co-exist with limited impacts on food production. Crops and PV panels are often co-located as they have similar ideal conditions for maximum yield. The recent boom in solar photovoltaics is displacing a significant amount of cropland. The literature on agriculturally co-located PV array installations lacks important spatiotemporal details that could help inform future array installations and improve associated policies and incentive programs. This study used imagery from the National Agriculture Imagery Program for object-based analysis (within eCognition Developer), and from Landsat 5 TM, 7 ETM+ and 8 OLI for temporal analysis (using LandTrendr) to identify and characterize non-residential ground-mounted PV arrays in California's Central Valley installed between 2008 and 2018. This dataset includes over 210,000 individually identified panels grouped by mount and installation year into 1006 PV arrays (69% are agriculturally co-located). The most common type of mounting system is fixed-axis, and individual co-located systems tend to be small (0.34 MW). There were fewer single-axis tracking arrays, although the average capacity per system is nearly four times higher (1.20 MW). In total, the mapped arrays accounted for 3.6 GW of capacity and generated a cumulative of 32,700 GWh within the Central Valley during the study period. For the 694 identified agriculturally co-located arrays (2.1 GW), significantly sub-optimal installation practices were observed in the spacing and spatial field placement of the arrays. In terms of crop conversion preferences, commodity crops (pastureland) dominated the total cumulative area converted although specialty crops (orchards) also contributed to a large number of solar installations on cropland. These results provide important details of current PV placement practices; understanding these can help to inform future practices and guide future regulations that might promote solar installations while preserving agricultural production.


Subject(s)
Solar Energy , Sunlight , California , Crops, Agricultural , Electricity
6.
Sci Total Environ ; 793: 148483, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34182450

ABSTRACT

Climate change is increasing winter temperatures across the planet, altering snowmelt hydrology. This study addresses a gap in snow research in non-alpine areas by examining changes to snow and winter and spring streamflow across most of the eastern US using daily observations from weather stations and stream gages from water years 1960-2019. These daily data were aggregated across drainage basins and classified winters with similar temperatures; differences between winters and both seasonal and annual trends were statistically quantified. Winters were classified as "warm" or "cool" in each drainage basin relative to the 60-year mean; analysis of the data indicates that warm winters occur more frequently in recent decades from an average of 0.39 to 3.96 warm winters/decade from the 1960's to the 2010's respectively. Those classifications were then used to examine changes in snowpack over the same period, which shows that warmer winters have on average 50.1 cm less annual snowfall, a reduced maximum snowpack depth by 14.4 cm, and 34 more bare ground days. These changes correlate with shifts to higher winter streamflows as well as peak basin yields that are 0.02 cm lower and occur three days earlier in warm winters. In addition to altered soil moisture and stream ecosystem dynamics, these snow and streamflow changes may have negative infrastructure and economic implications including impacts to winter tourism and agriculture.


Subject(s)
Ecosystem , Snow , Climate Change , Hydrology , Seasons
7.
Environ Sci Technol ; 54(23): 15329-15337, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33186025

ABSTRACT

Novel low-pressure irrigation technologies have been widely adopted by farmers, allowing both reduced water and energy use. However, little is known about how the transition from legacy technologies affected water and energy use at the aquifer scale. Here, we examine the widespread adoption of low-energy precision application (LEPA) and related technologies across the Kansas High Plains Aquifer. We combine direct energy consumption and carbon emission estimates with life cycle assessment to calculate the energy and greenhouse gas (GHG) footprints of irrigation. We integrate detailed water use, irrigation type, and pump energy source data with aquifer water level and groundwater chemistry information to produce annual estimates of energy use and carbon emissions from 1994 to 2016. The rapid adoption of LEPA technologies did not slow pumping, but it reduced energy use by 19.2% and GHG emissions by 15.2%. Nevertheless, water level declines have offset energy efficiency gains because of LEPA adoption. Deeper water tables quadrupled the proportion of GHG emissions resulting from direct carbon emissions, offsetting the decarbonization of the regional electrical grid. We show that low-pressure irrigation technology adoption, absent policies that incentivize or mandate reduced water use, ultimately increases the energy and carbon footprints of irrigated agriculture.


Subject(s)
Carbon , Greenhouse Gases , Greenhouse Effect , Kansas , Technology , Water
8.
Nature ; 576(7786): 213, 2019 12.
Article in English | MEDLINE | ID: mdl-31822829
9.
Environ Pollut ; 255(Pt 2): 113273, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31627173

ABSTRACT

Increasing riverine phosphorus (P) levels in headwaters due to expanded and intensified human activities are worldwide concerns, because P is a well-known limiting nutrient for freshwater eutrophication. Here we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe total phosphorus (TP) sources and transport in a headwater watershed undergoing rapid agricultural expansion in the upper Taihu Lake Basin, China. Our models, which include variables for land cover, river length, runoff depth, and pond density, explain 94% of the spatio-temporal variability in TP loads. Agricultural lands contribute the largest percentage (61%) of the TP loads delivered downstream, followed by forestland (21%) and urban land (18%). Future agricultural expansion to 15% of the total basin area is possible, which could lead to a 50% increase in TP loads. According to our analysis, an average of 24% of the total P export from the watershed landscape was intercepted in ponds. The exported amount was subsequently retained by tributaries and along the mainstem river, accounting for 14% and 43% of their inflowing loads, respectively. The remaining ∼6 tons yr-1 of TP was eventually transported into Tianmu Lake, in Southeastern China. The model identified several sub-catchments as hotspots of TP loss and thus logical sites for targeted management. Our study underscores the significance of agricultural expansion as a factor that can exacerbate headwater TP pollution, highlighting the importance of landscapes to buffer TP losses from sensitive hilly catchments. This also points to a need for an integrated management strategy that considers the spatial-varying P sources and associated transport of TP in precious headwater resources.


Subject(s)
Environmental Monitoring , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Agriculture , China , Eutrophication , Human Activities , Lakes , Nitrogen/analysis , Rivers
10.
Sci Total Environ ; 683: 37-48, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31129330

ABSTRACT

The existence of lowland ponds alter watershed nitrogen (N) cycles via combined changes in runoff and N processing potential, which can significantly buffer watershed N transport. Here, we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe N transport and explore the buffering roles of lowland ponds in a small headwater watershed of Taihu Lake Basin, China. Our model, which included variables for nutrient sources, riverine length, precipitation and pond density, explained 95% of the spatio-temporal variability in total N loads. Results indicated that the northern parts of this watershed were hotspot regions, which contributed relatively large N yields. While their contributions have high temporal variations, they depend upon local precipitation rates. The model results also revealed important processes of landscape N retention. On average, approximately 87% of terrestrial N inputs were removed via denitrification, plant uptake, and other processes or retained in the subsurface during land-to-water delivery. This amount can be further differentiated into 12% retained by lowland ponds and the remaining 75% associated with other landscapes including nutrient storage in soils and groundwater, as a legacy of historical inputs. By contrast, in-stream retention processes only removed 3% of the total terrestrial N inputs. In the future, riverine N pollution will likely be exacerbated by releases from legacy storage and intensified human activities, especially as climate change is expected to enhance extreme rainfall conditions. An integrated N management strategy that appropriately considers the buffering roles of lowland ponds and other landscapes, is required to optimize N fertilizer inputs and protect precious headwater resources.

11.
Proc Natl Acad Sci U S A ; 115(47): 11891-11898, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397145

ABSTRACT

Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people's livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefits and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources.

12.
J Environ Qual ; 47(5): 1024-1032, 2018 09.
Article in English | MEDLINE | ID: mdl-30272781

ABSTRACT

The effects of manure application in agriculture on surface water quality has become a local to global problem because of the adverse consequences on public health and food security. This study evaluated (i) the spatial distribution of bovine (cow) and porcine (pig) genetic fecal markers, (ii) how hydrologic factors influenced these genetic markers, and (iii) their variations as a function of land use, nutrients, and other physiochemical factors. We collected 189 samples from 63 watersheds in Michigan's Lower Peninsula during baseflow, spring melt, and summer rain conditions. For each sample, we quantified the concentrations of bovine and porcine genetic markers by digital droplet polymerase chain reaction and measured , dissolved oxygen, pH, temperature, total phosphorus, total nitrogen, nitrate-nitrite (NO), ammonia (NH), soluble reactive phosphorus, streamflow, and watershed specific precipitation. Bovine and porcine manure markers were ubiquitous in rivers that drain agricultural and natural fields across the study region. This study provides baseline conditions on the state of watershed impairment, which can be used to develop best management practices that could improve water quality. Similar studies should be performed with higher spatial sampling density to elucidate detailed factors that influence the transport of manure constituents.


Subject(s)
Hydrology , Nutrients , Agriculture , Animals , Cattle , Environmental Monitoring , Female , Nitrogen , Phosphorus , Rivers , Swine , Water Quality
13.
J Environ Manage ; 217: 677-689, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29654971

ABSTRACT

Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning.


Subject(s)
Agriculture , Conservation of Natural Resources , Urbanization , Cities , Michigan , Soil
14.
Sci Total Environ ; 579: 1794-1803, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27932215

ABSTRACT

Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry. We tested two main concepts about mechanisms linking LULC and lake water chemistry: groundwater pathways are an important mechanism driving legacy effects; and, LULC over multiple spatial scales is more closely related to lake chemistry than LULC over a single spatial scale. We applied statistical models to twelve water chemistry variables, ranging from nutrients to relatively conservative ions, to better understand the roles of biogeochemical reactivity and solubility on connections between LULC and aquatic ecosystem response. Our study illustrates how different areas can have long groundwater pathways that represent different LULC than what can be seen on the landscape today. These groundwater pathways delay the arrival of nutrients and other water quality constituents, thus creating a legacy of historic land uses that eventually reaches surface water. We find that: 1) several water chemistry variables are best fit by legacy LULC while others have a stronger link to current LULC, and 2) single spatial scales of LULC analysis performed worse for most variables. Our novel combination of temporal and spatial scales was the best overall model fit for most variables, including SRP where this model explained 54% of the variation. We show that it is important to explicitly account for temporal and spatial context when linking LULC to ecosystem response.


Subject(s)
Environmental Monitoring/methods , Water Pollution/statistics & numerical data , Conservation of Natural Resources/methods , Water Pollution/analysis
16.
Arthritis Res Ther ; 18(1): 214, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27716403

ABSTRACT

BACKGROUND: Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout. METHODS: sUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity. RESULTS: After 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting. CONCLUSION: The pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout.


Subject(s)
Gout , Organic Anion Transporters/drug effects , Organic Cation Transport Proteins/drug effects , Thioglycolates/pharmacokinetics , Triazoles/pharmacokinetics , Uric Acid/blood , Uricosuric Agents/pharmacokinetics , Cell Line , Humans , Kidney/drug effects , Male
17.
Sci Total Environ ; 566-567: 988-1001, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27344509

ABSTRACT

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

18.
Curr Rheumatol Rep ; 18(6): 34, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27105641

ABSTRACT

Elevated serum urate concentration is the primary cause of gout. Understanding the processes that affect serum urate concentration is important for understanding the etiology of gout and thereby understanding treatment. Urate handing in the human body is a complex system including three major processes: production, renal elimination, and intestinal elimination. A change in any one of these can affect both the steady-state serum urate concentration as well as other urate processes. The remarkable complexity underlying urate regulation and its maintenance at high levels in humans suggests that this molecule could potentially play an interesting role other than as a mere waste product to be eliminated as rapidly as possible.


Subject(s)
Uric Acid/metabolism , Gout/metabolism , Humans , Hyperuricemia/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Kidney Tubules/metabolism , Organic Anion Transporters/physiology , Renal Reabsorption/physiology , Uric Acid/blood
19.
Ground Water ; 54(2): 231-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26014963

ABSTRACT

A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km(3) since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Groundwater/analysis , Water Resources , Midwestern United States , Models, Theoretical , Southwestern United States , Water Resources/supply & distribution , Wyoming
20.
Proc Natl Acad Sci U S A ; 112(33): 10419-24, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240328

ABSTRACT

Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan's Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL(-1)). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems.


Subject(s)
Feces/microbiology , Water Microbiology , Water Pollutants/analysis , Water/analysis , Bacteroides/isolation & purification , Environmental Monitoring/methods , Escherichia coli/isolation & purification , Geology , Hydrogen-Ion Concentration , Michigan , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...