Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Sci Total Environ ; 921: 170853, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38369144

ABSTRACT

DLCA has been applied to several food waste streams, however, to date no critical assessment of its strengths, weaknesses, opportunities, and threats (SWOT) is available in the scientific literature. Accordingly, the present review aims to provide a comprehensive overview of the available literature on DLCA and its application to Household and Commercial Food Waste (HCFW) by providing critical assessment and perspectives for future research. The Population, Intervention, Comparison, and Outcome (PICO) framework for literature review was employed, with just 12 relevant studies identified between 1999 and 2022, highlighting a dearth of research on DLCA of food waste and the need for further research. Identified studies exhibit significant variations with respect to DLCA methodology, boundary settings, and data quality and reporting, with more attention typically given to combining conventional LCA with dynamic characterization models, thus making it difficult to draw conclusive findings or identify consistent trends. Additionally, most identified studies employed DLCA for a specific case study and comparison with traditional LCA outcomes was typically ignored; just one study presented the projected impact from both LCA and DLCA for the entire life cycle of a product. Employed functional/reference units ranged from specific quantities such as 1 kg of refined crystals or syrup, 1 g L-1 Sophorolipid solution, and 1 kg of dry food with packaging material, to broader indicators like 1 kg of biofuel or 1 MJ of primary energy. Monte Carlo simulation was the most frequently employed method for uncertainty analyses within identified studies. Sensitivity analyses were conducted in just 4 studies, but it was not always clearly reported. While DLCA is undoubtedly a more realistic approach to impact assessment, and thus likely more accurate, a need exists for increasingly standardized and regulated versions of DLCA for global and multi-criteria practices.


Subject(s)
Refuse Disposal , Waste Management , Animals , Food Loss and Waste , Food , Data Accuracy , Life Cycle Stages , Waste Management/methods
2.
J Clin Med ; 13(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38256468

ABSTRACT

BACKGROUND: Most government efforts to control the COVID-19 pandemic revolved around non-pharmaceutical interventions (NPIs) and vaccination. However, many respiratory diseases show distinctive seasonal trends. In this manuscript, we examined the contribution of these three factors to the progression of the COVID-19 pandemic. METHODS: Pearson correlation coefficients and time-lagged analysis were used to examine the relationship between NPIs, vaccinations and seasonality (using the average incidence of endemic human beta-coronaviruses in Sweden over a 10-year period as a proxy) and the progression of the COVID-19 pandemic as tracked by deaths; cases; hospitalisations; intensive care unit occupancy and testing positivity rates in six Northern European countries (population 99.12 million) using a population-based, observational, ecological study method. FINDINGS: The waves of the pandemic correlated well with the seasonality of human beta-coronaviruses (HCoV-OC43 and HCoV-HKU1). In contrast, we could not find clear or consistent evidence that the stringency of NPIs or vaccination reduced the progression of the pandemic. However, these results are correlations and not causations. IMPLICATIONS: We hypothesise that the apparent influence of NPIs and vaccines might instead be an effect of coronavirus seasonality. We suggest that policymakers consider these results when assessing policy options for future pandemics. LIMITATIONS: The study is limited to six temperate Northern European countries with spatial and temporal variations in metrics used to track the progression of the COVID-19 pandemic. Caution should be exercised when extrapolating these findings.

3.
Acta Microbiol Immunol Hung ; 70(4): 304-310, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38063903

ABSTRACT

This study sought to investigate the occurrence and subsequently to characterize extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae from urban and rural stagnant water samples during the wet season (December to February) in several regions of northern Tunisia. From 56 stagnant water samples, 14 ESBL-producing Enterobacteriaceae were recovered, including 9 Escherichia coli, 3 Klebsiella pneumoniae, and 2 K. oxytoca. Most isolates were multidrug-resistant, with ESBL production primarily encoded by blaCTX-M-15 (n = 8) and blaCTX-M-1 (n = 4) followed by blaCTX-M-55 (n = 1) and blaTEM-26 (n = 1). One K. pneumoniae isolate co-harbored blaKPC and blaCTX-M-15 genes. Class 1 integrons were detected in 4 isolates, however, sul1, sul2, and aac(6')-Ib-cr genes were detected in eleven, two, and four isolates, respectively. The nine E. coli isolates belonged to seven sequence types namely, B2/ST131 (3 isolates), A/ST164, A/ST10, A/ST224, A/ST38, A/ST155, and A/ST69 (each of them one isolate). The three K. pneumoniae isolates were assigned to three sequence types: ST101, ST405 (harboring CTX-M-15 and KPC), and ST1564. Overall, the phenotypic and genotypic traits of collected isolates mirror the molecular epidemiology of ESBL-producing enterobacteria in Tunisia and highlight the potential role of stagnant water in both urban and rural areas as a reservoir of ESBL-producing Enterobacteriaceae.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Tunisia/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents , Enterobacteriaceae/genetics
4.
PLoS One ; 18(11): e0291739, 2023.
Article in English | MEDLINE | ID: mdl-37976287

ABSTRACT

In 2021, Campylobacteriosis was the main gastrointestinal disease in the European Union since 2007 according to the European Centre for Disease Prevention and Control. In the Republic of Ireland, the incidence of the disease is particularly high with approximately 3,000 cases per annum, raising significant concerns for national health authorities with an expected increase in the number of cases in the light of climate change. The current study sought to assess the spatio-temporal patterns of campylobacteriosis in the Republic of Ireland using 20,391 cases from January 2011 to December 2018. An ensemble of spatial statistics techniques including seasonal decomposition, spatial clustering and space-time scanning, were used to elucidate the main individual and spatio-temporal characteristics of the disease in the country. Findings revealed that cases from the paediatric age group (i.e., under 5 years old) were more likely to occur in rural areas (aOR: 1.1.27, CI 95% 1.14-1.41) while cases from the intermediate age group (i.e., >5 & <65 years old) were associated with urban living (aOR: 1.30, CI 95% 1.21-1.4). The disease exhibited a peak during Irish summer, with a stronger seasonal signal reported in counties located on the Western part of the country. Infection hotspots were more likely to occur in urban areas, and more particularly on the Southern part of the island and around the main metropolitan areas. Overall, research findings pointed out the influence of local and spatio-temporally specific socio-demographic and environmental risk factors (i.e., cooking habits, local weather, dietary types) therefore highlighting the need for initiating spatio-temporally targeted health management and surveillance strategies.


Subject(s)
Campylobacter Infections , Gastroenteritis , Intraabdominal Infections , Child , Humans , Child, Preschool , Aged , Campylobacter Infections/epidemiology , Ireland/epidemiology , Spatial Analysis , Incidence , Spatio-Temporal Analysis
5.
Life (Basel) ; 13(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37763237

ABSTRACT

This study sought to evaluate the probiotic properties and the food preservation ability of lactic acid bacteria isolates collected from the intestines of wild marine fishes (gilthead seabream (Sparus aurata) (n = 60) and whiting fish (Merlangius merlangus) (n = 40)) from the Mediterranean sea in the area of Mostaganem city, Algeria. Forty-two isolates were identified as: Enterococcus durans (n = 19), Enterococcus faecium (n = 15), Enterococcus faecalis (n = 4), Lactococcus lactis subp. lactis (n = 3), and Lactobacillus plantarum (n = 1). All isolates showed inhibition to at least one indicator strain, especially against Listeria monocytogenes, Staphylococcus aureus, Paenibacillus larvae, Vibrio alginolyticus, Enterococcus faecalis, Bacillus cereus, and Bacillus subtilis. In all collected isolates, PCR analysis of enterocin-encoding genes showed the following genes: entP (n = 21), ent1071A/B (n = 11), entB (n = 8), entL50A/B (n = 7), entAS48 (n = 5), and entX (n = 1). Interestingly, 15 isolates harbored more than one ent gene. Antimicrobial susceptibility, phenotypic virulence, and genes encoding virulence factors were investigated by PCR. Resistance to tetracycline (n = 8: tetL + tetK), erythromycin (n = 7: 5 ermA, 2 msrA, and 1 mef(A/E)), ciprofloxacin (n = 1), gentamicin (n = 1: aac(6')-aph(2″)), and linezolid (n = 1) were observed. Three isolates were gelatinase producers and eight were α-hemolytic. Three E. durans and one E. faecium harbored the hyl gene. Eight isolates showing safety properties (susceptible to clinically relevant antibiotics, free of genes encoding virulence factors) were tested to select probiotic candidates. They showed high tolerance to low pH and bile salt, hydrophobicity power, and co-culture ability. The eight isolates showed important phenotypic and genotypic traits enabling them to be promising probiotic candidates or food bio-conservers and starter cultures.

6.
Nutrients ; 15(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37513674

ABSTRACT

Dietary patterns and body mass index (BMI) play a significant role in the development of noncommunicable diseases (NCDs), which are the leading cause of mortality worldwide, including Ireland. A cross-sectional survey was conducted across Ireland to collate respondents' socioeconomic profiles, health status, and dietary patterns with a representative sample size of 957 adult respondents. Principal component analysis (PCA) and statistical analyses were subsequently employed. To the author's knowledge, this is the first study to use recent (2021) nationally representative data to characterise dietary patterns in Ireland via dimensionality reduction. Five distinct dietary patterns ("meat-focused", "dairy/ovo-focused", "vegetable-focused", "seafood-focused", and "potato-focused") were identified and statistically characterised. The "potato-focused" group exhibited the highest mean BMI (26.88 kg/m2), while the "vegetable-focused" group had the lowest (24.68 kg/m2). "Vegetable-focused" respondents were more likely to be associated with a categorically healthy BMI (OR = 1.90) and urban residency (OR = 2.03). Conversely, "meat-focused" respondents were more likely to have obesity (OR = 1.46) and rural residency (OR = 1.72) along with the "potato-focused" group (OR = 2.15). Results show that data-derived dietary patterns may better predict health outcomes than self-reported dietary patterns, and transitioning to diets focusing on vegetables, seafood, and lower meat consumption may improve health.


Subject(s)
Diet , Feeding Behavior , Adult , Humans , Ireland , Cross-Sectional Studies , Vegetables , Body Mass Index , Socioeconomic Factors , Outcome Assessment, Health Care
7.
Environ Pollut ; 333: 121970, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37343911

ABSTRACT

Natural ecosystems can become significant reservoirs and/or pathways for antimicrobial resistance (AMR) dissemination, with the potential to affect nearby microbiological, animal, and ultimately human communities. This is further accentuated in environments that provide direct human exposure, such as drinking water. To date, however, few studies have investigated AMR dissemination potential and the presence of co-selective stressors (e.g., metals/metalloids) in groundwater environments of human health significance. Accordingly, the present study analysed samples from rural (drinking) groundwater supplies (i.e., private wells) in the Republic of Ireland, where land use is dominated by livestock grazing activities. In total, 48 Escherichia coli isolates tested phenotypically for antimicrobial susceptibility in an earlier study were further subject to whole genome sequencing (WGS) and corresponding water samples were further analysed for trace metal/metalloid concentrations. Eight isolates (i.e., 16.7%) were genotypically resistant to antimicrobials, confirming prior phenotypic results through the identification of ten antimicrobial resistance genes (ARGs); namely: aph(3″)-lb (strA; n=7), aph(6)-Id (strA; n = 6), blaTEM (n = 6), sul2 (n = 6), tetA (n = 4), floR (n = 2), dfrA5 (n = 1), tetB (n = 1), and tetY (n = 1). Additional bioinformatic analysis revealed that all ARGs were plasmid-borne, except for two of the six sul2 genes, and that 31.2% of all tested isolates (n = 15) and 37.5% of resistant ones (n = 3) carried virulence genes. Study results also found no significant relationships between metal concentrations and ARG abundance. Additionally, just one genetic linkage was identified between ARGs and a metal resistance gene (MRG), namely merA, a mercury-resistant gene found on the same plasmid as blaTEM, dfrA5, strA, strB, and sul2 in the only isolate of inferred porcine (as opposed to bovine) origin. Overall, findings suggest that ARG (and MRG) acquisition may be occurring prior to groundwater ingress, and are likely a legacy issue arising from agricultural practices.


Subject(s)
Anti-Infective Agents , Escherichia coli , Animals , Cattle , Humans , Swine , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Ecosystem , Ireland , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests
8.
Article in English | MEDLINE | ID: mdl-37047846

ABSTRACT

Since the start of the COVID-19 pandemic in early 2020, governments around the world have adopted an array of measures intended to control the transmission of the SARS-CoV-2 virus, using both pharmaceutical and non-pharmaceutical interventions (NPIs). NPIs are public health interventions that do not rely on vaccines or medicines and include policies such as lockdowns, stay-at-home orders, school closures, and travel restrictions. Although the intention was to slow viral transmission, emerging research indicates that these NPIs have also had unintended consequences for other aspects of public health. Hence, we conducted a narrative review of studies investigating these unintended consequences of NPIs, with a particular emphasis on mental health and on lifestyle risk factors for non-communicable diseases (NCD): physical activity (PA), overweight and obesity, alcohol consumption, and tobacco smoking. We reviewed the scientific literature using combinations of search terms such as 'COVID-19', 'pandemic', 'lockdowns', 'mental health', 'physical activity', and 'obesity'. NPIs were found to have considerable adverse consequences for mental health, physical activity, and overweight and obesity. The impacts on alcohol and tobacco consumption varied greatly within and between studies. The variability in consequences for different groups implies increased health inequalities by age, sex/gender, socioeconomic status, pre-existing lifestyle, and place of residence. In conclusion, a proper assessment of the use of NPIs in attempts to control the spread of the pandemic should be weighed against the potential adverse impacts on other aspects of public health. Our findings should also be of relevance for future pandemic preparedness and pandemic response teams.


Subject(s)
COVID-19 , Population Health , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Communicable Disease Control , Overweight/epidemiology , Pandemics/prevention & control , Obesity/epidemiology
9.
Genes (Basel) ; 14(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37107633

ABSTRACT

Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of antimicrobial resistance and the genetic relatedness of collected isolates. Ninety-five feces swabs from free-range chickens associated with two households (House 1/House 2) in a rural region in northern Tunisia were collected. Samples were screened to recover ESBL-Ec, and collected isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, and molecular typing (pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)). Overall, 47 ESBL-Ec were identified, with the following genes detected: 35 blaCTX-M-1, 5 blaCTX-M-55, 5 blaCTX-M-15, 1 blaSHV-2, and 1 blaSHV-12. Resistance to fluoroquinolones, tetracycline, sulfonamides, and colistin was encoded by aac(6')-Ib-cr (n = 21), qnrB (n = 1), and qnrS (n = 2); tetA (n = 17)/tetB (n = 26); sul1 (n = 29)/sul2 (n = 18); and mcr-2 (n = 2) genes, respectively. PFGE and MLST identified genetic homogeneity of isolates in House 1; however, isolates from House 2 were heterogeneous. Notably, among nine identified sequence types, ST58, ST69, ST224, and ST410 belong to pandemic high-risk clonal lineages associated with extrapathogenic E. coli. Minor clones belonging to ST410 and ST471 were shared by chickens from both households. The virulence genes fyuA, fimH, papGIII, and iutA were detected in 35, 47, 17, and 23 isolates, respectively. Findings indicate a high occurrence of ESBL-Ec in free-range chickens and highlight the occurrence of pandemic zoonotic clones.


Subject(s)
Chickens , Escherichia coli , Animals , Chickens/genetics , Multilocus Sequence Typing , Tunisia/epidemiology , beta-Lactamases/genetics , Clone Cells
10.
Epidemiol Infect ; 151: e19, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36621004

ABSTRACT

This systematic literature review aimed to provide an overview of the characteristics and methods used in studies applying the disability-adjusted life years (DALY) concept for infectious diseases within European Union (EU)/European Economic Area (EEA)/European Free Trade Association (EFTA) countries and the United Kingdom. Electronic databases and grey literature were searched for articles reporting the assessment of DALY and its components. We considered studies in which researchers performed DALY calculations using primary epidemiological data input sources. We screened 3053 studies of which 2948 were excluded and 105 studies met our inclusion criteria. Of these studies, 22 were multi-country and 83 were single-country studies, of which 46 were from the Netherlands. Food- and water-borne diseases were the most frequently studied infectious diseases. Between 2015 and 2022, the number of burden of infectious disease studies was 1.6 times higher compared to that published between 2000 and 2014. Almost all studies (97%) estimated DALYs based on the incidence- and pathogen-based approach and without social weighting functions; however, there was less methodological consensus with regards to the disability weights and life tables that were applied. The number of burden of infectious disease studies undertaken across Europe has increased over time. Development and use of guidelines will promote performing burden of infectious disease studies and facilitate comparability of the results.


Subject(s)
Communicable Diseases , Humans , Quality-Adjusted Life Years , Communicable Diseases/epidemiology , Europe/epidemiology , United Kingdom/epidemiology , Netherlands , Cost of Illness
11.
Sci Total Environ ; 866: 161302, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36592918

ABSTRACT

Over recent years, Ireland has reported the highest crude incidence rates of Shiga toxin-producing Escherichia coli (STEC) enteritis in Europe. Unregulated private groundwater sources have emerged as an important potential transmission route for STEC, with up to 750,000 Irish residents reliant on these sources for domestic waters. This study aimed to investigate the prevalence and serogroup profile of STEC contamination from domestic private wells in western Ireland. Fifty-two groundwater sources were analysed during two sampling campaigns in the autumn (September/October) of 2019 (n = 21) and 2021 (n = 31). Untreated groundwater samples (30 L) were collected and analysed using the "CapE" (capture, amplify, extract) method. Extracted DNA was tested using multiplex real-time PCR for Shiga toxin stx1 and/or stx2 and eae genes. STEC positive DNA samples were tested for clinically relevant serogroups by real-time PCR. Data relating to 27 potential groundwater contamination risk factors were geospatially linked to each well and assessed for association with E. coli, stx1 and/or stx2 and eae presence/absence. Overall, 20/52 wells (38.4 %) were positive for E. coli (median concentration 8.5 MPN/100 mL as assessed by Colilert-18 method). Stx1 and/or stx2 was detected in 10/52 (19.2 %) wells overall and 8/20 E. coli positive wells, equating to a STEC to "generic" E. coli detection ratio of 40 %. Six of these wells (30 %) were also positive for eae. One or more serogroup-specific gene targets were identified in all but one stx1 and/or stx2 positive sample, with O145 (n = 6), O157 (n = 5) and O103 (n = 4) most prevalent. STEC presence was significantly associated with decreasing well depth (U = -2.243; p = 0.024) and increasing 30-day mean antecedent rainfall (U = 2.126; p = 0.034). Serogroup O104 was associated with increased sheep density (U = 2.089; p = 0.044) and detection of stx1 and/or stx2 + eae with increased septic tank density (U = 2.246 p = 0.023). Findings indicate high detection rates of clinically relevant STEC in E. coli contaminated groundwater sources in Ireland.


Subject(s)
Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Sheep , Serogroup , Ireland/epidemiology , Escherichia coli Proteins/genetics , Risk Factors , Feces
12.
J Environ Manage ; 331: 117112, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36681033

ABSTRACT

Private well users in Ontario are responsible for ensuring the potability of their own private drinking water source through protective actions (i.e., water treatment, well maintenance, and regular water quality testing). In the absence of regulation and limited surveillance, quantitative microbial risk assessment (QMRA) represents the most practical and robust approach to estimating the human health burden attributable to private wells. For an increasingly accurate estimation, QMRA of private well water should be represented by a coupled model, which includes both the socio-cognitive and physical aspects of private well water contamination and microbial exposure. The objective of the current study was to determine levels of waterborne exposure via well water consumption among three sub-groups (i.e., clusters) of private well users in Ontario and quantify the risk of waterborne acute gastrointestinal illness (AGI) attributed to Giardia, shiga-toxin producing E. coli (STEC) and norovirus from private drinking water sources in Ontario. Baseline simulations were utilized to explore the effect of varying socio-cognitive scenarios on model inputs (i.e., increased awareness, protective actions, aging population). The current study uses a large spatio-temporal groundwater quality dataset and cross-sectional province-wide survey to create socio-cognitive-specific QMRA simulations to estimate the risk of waterborne AGI attributed to three enteric pathogens in private drinking waters source in Ontario. Findings suggest significant differences in the level of exposure among sub-groups of private well users. Private well users within Cluster 3 are characterised by higher levels of exposure and annual illness attributable to STEC, Giardia and norovirus than Clusters 1 and 2. Provincial incidence rates of 520.9 (1522 illness per year), 532.1 (2211 illness per year) and 605.5 (5345 illness per year) cases/100,000 private well users per year were predicted for private well users associated with Clusters 1 through 3. Established models will enable development of necessary tools tailored to specific groups of at-risk well users, allowing for preventative public health management of private groundwater sources.


Subject(s)
Drinking Water , Groundwater , Humans , Aged , Ontario , Escherichia coli , Cross-Sectional Studies , Risk Assessment , Water Microbiology , Perception , Water Supply
13.
Sci Total Environ ; 857(Pt 3): 159677, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302430

ABSTRACT

Private well users in Ontario are responsible for protective actions, including source maintenance, treatment, and submitting samples for laboratory testing. However, low participation rates are reported, thus constituting a public health concern, as risk mitigation behaviours can directly reduce exposure to waterborne pathogens. The current study examined the combined effects of socio-demographic profile, experience(s), and "risk domains" (i.e., awareness, attitudes, risk perceptions and beliefs) on behaviours, and subsequently classified private well users in Ontario based on cognitive factors. A province-wide online survey (n = 1228) was employed to quantify Ontario well owners' awareness, perceptions, and behaviours in relation to their personal groundwater supply and local contamination sources. A scoring protocol for four risk domains was developed. Two-step cluster analysis was used to classify respondents based on individual risk domain scores. Logistic regression was employed to identify key variables associated with cluster membership (i.e., profile analysis). Overall, 1140 survey respondents were included for analyses. Three distinct clusters were identified based on two risk domains; groundwater awareness and source risk perception. Profile analyses indicate "low awareness and source risk perception" (Low A/SRP) members were more likely male, while "low awareness and moderate source risk perception" (Low A/Mod SRP) members were more likely female and bottled water users. Well users characterised as "high awareness and source risk perception" (High A/SRP) were more likely to report higher educational attainment and previous well water testing. Findings illustrate that socio-cognitive clusters and their components (i.e., demographics, awareness, attitudes, perceptions, experiences, and protective actions) are distinct based on the likelihood, frequency, and magnitude of waterborne pathogen exposures (i.e., risk-based). Risk-based clustering, when incorporated into quantitative microbial risk assessment, enables the development of effective risk management and communication initiatives that are demographically focused and tailored to specific sub-groups.


Subject(s)
Groundwater , Male , Female , Humans , Cross-Sectional Studies , Ontario , Risk Assessment , Perception
14.
Risk Anal ; 43(8): 1599-1626, 2023 08.
Article in English | MEDLINE | ID: mdl-36114612

ABSTRACT

Complex, multihazard risks such as private groundwater contamination necessitate multiannual risk reduction actions including seasonal, weather-based hazard evaluations. In the Republic of Ireland (ROI), high rural reliance on unregulated private wells renders behavior promotion a vital instrument toward safeguarding household health from waterborne infection. However, to date, pathways between behavioral predictors remain unknown while latent constructs such as extreme weather event (EWE) risk perception and self-efficacy (perceived behavioral competency) have yet to be sufficiently explored. Accordingly, a nationwide survey of 560 Irish private well owners was conducted, with structural equation modeling (SEM) employed to identify underlying relationships determining key supply management behaviors. The pathway analysis (SEM) approach was used to model three binary outcomes: information seeking, post-EWE action, and well testing behavior. Upon development of optimal models, perceived self-efficacy emerged as a significant direct and/or indirect driver of all three behavior types-demonstrating the greatest indirect effect (ß = -0.057) on adoption of post-EWE actions and greatest direct (ß = 0.222) and total effect (ß = 0.245) on supply testing. Perceived self-efficacy inversely influenced EWE risk perception in all three models but positively influenced supply awareness (where present). Notably, the presence of a vulnerable (infant and/or elderly) household member negatively influenced adoption of post-EWE actions (ß = -0.131, p = 0.016). Results suggest that residential and age-related factors constitute key demographic variables influencing risk mitigation and are strongly mediated by cognitive variables-particularly self-efficacy. Study findings may help contextualize predictors of private water supply management, providing a basis for future risk-based water interventions.


Subject(s)
Groundwater , Water Supply , Humans , Aged , Latent Class Analysis , Groundwater/chemistry , Ireland , Risk Reduction Behavior
15.
Int J Hyg Environ Health ; 248: 114077, 2023 03.
Article in English | MEDLINE | ID: mdl-36462411

ABSTRACT

The province of Ontario compromises the largest groundwater reliant population in Canada serving approximately 1.6 million individuals. Unlike municipal water systems, private well water is not required to meet water quality regulatory standards and thus source maintenance, treatment and testing remains the responsibility of the well owner. Infections associated with private drinking water systems are rarely documented given their typically sporadic nature, thus the human health effects (e.g., acute gastrointestinal illness (AGI)) on consumers remains relatively unknown, representing a significant gap in water safety management. The current study sought to quantify the risk of waterborne AGI attributed to Giardia, shiga-toxin producing E. coli (STEC) and norovirus from private drinking water sources in Ontario using Monte Carlo simulation-based quantitative microbial risk assessment (QMRA). Findings suggest that consumption of contaminated private well water in Ontario is responsible for approximately 4823 AGI cases annually, with 3464 (71.8%) and 1359 (28.1%) AGI cases predicted to occur in consolidated and unconsolidated aquifers, respectively. By pathogen, waterborne AGI was attributed to norovirus (62%; 2991/4823), Giardia (24.6%; 1186/4823) and STEC (13.4%; 646/4823). The developed QMRA framework was used to assess the potential health impacts of partial and total well water treatment system failure. In the unlikely event of total treatment failure, total mean annual illnesses are predicted to almost double (4217 to 7064 cases per year), highlighting the importance of effective water treatment and comprehensive testing programs in reducing infectious health risks attributable to private well water in Ontario. Study findings indicate significant underreporting of waterborne AGI rates at the provincial level likely biasing public health interventions and programs that are effective in monitoring and minimizing the health risk associated with private well water.


Subject(s)
Drinking Water , Giardiasis , Groundwater , Humans , Ontario/epidemiology , Water Wells , Escherichia coli , Risk Assessment , Water Microbiology , Water Supply
16.
Environ Pollut ; 317: 120817, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36481470

ABSTRACT

The role of the natural environment in the dissemination of antimicrobial resistant bacteria has been increasingly recognised in the literature. However, knowledge surrounding the critical factors and mechanisms mediating their occurrence is still limited, particularly in relatively 'pristine' groundwater environments. In the Republic of Ireland (RoI), a country characterised by high groundwater reliance, household-based (unregulated) wells provide drinking water to 11% of the population. These private wells are generally located in rural areas, where the risk of microbiological contamination is high due to intensive agricultural practices and high reliance on domestic wastewater treatment systems; both of which are also potential sources of antimicrobials and antimicrobial resistant bacteria. Accordingly, the current research sought to elucidate current rates of antimicrobial resistant bacteria and the principal factors associated with their presence in private wells in the RoI. A total of 250 samples (from 132 wells nationwide) were assessed for the presence of faecal (Escherichia coli) and environmental (Pseudomonas aeruginosa) bacteria, with single isolates from each contaminated sample tested phenotypically against 18 and 9 antimicrobials, respectively. Findings show that while 16.7% of E. coli (n = 8/48) were categorically resistant to ≥1 antimicrobial, with a further 79.2% classified as intermediately resistant, no categorical resistance was found among P. aeruginosa isolates (n = 0/6), with just one intermediately resistant isolate detected. Multivariate regression modelling indicates significantly higher odds of resistant E. coli detection in concurrence with elevated cattle density (OR = 1.028, p = 0.032), aligning with findings of highest resistance rates to veterinary antimicrobials (e.g., streptomycin = 14.6%, tetracycline = 12.5%, and ampicillin = 12.5%). Multivariate model results also suggest overland flow culminating in direct wellhead ingress as a primary ingress mechanism for resistant E. coli. Study findings may inform groundwater source protection initiatives and antimicrobial resistance surveillance moving forward.


Subject(s)
Anti-Infective Agents , Groundwater , Animals , Cattle , Escherichia coli , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Ireland , Drug Resistance, Bacterial , Groundwater/microbiology , Anti-Infective Agents/pharmacology , Bacteria , Microbial Sensitivity Tests
17.
BMC Public Health ; 22(1): 1564, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978333

ABSTRACT

BACKGROUND: Calculating the disease burden due to injury is complex, as it requires many methodological choices. Until now, an overview of the methodological design choices that have been made in burden of disease (BoD) studies in injury populations is not available. The aim of this systematic literature review was to identify existing injury BoD studies undertaken across Europe and to comprehensively review the methodological design choices and assumption parameters that have been made to calculate years of life lost (YLL) and years lived with disability (YLD) in these studies. METHODS: We searched EMBASE, MEDLINE, Cochrane Central, Google Scholar, and Web of Science, and the grey literature supplemented by handsearching, for BoD studies. We included injury BoD studies that quantified the BoD expressed in YLL, YLD, and disability-adjusted life years (DALY) in countries within the European Region between early-1990 and mid-2021. RESULTS: We retrieved 2,914 results of which 48 performed an injury-specific BoD assessment. Single-country independent and Global Burden of Disease (GBD)-linked injury BoD studies were performed in 11 European countries. Approximately 79% of injury BoD studies reported the BoD by external cause-of-injury. Most independent studies used the incidence-based approach to calculate YLDs. About half of the injury disease burden studies applied disability weights (DWs) developed by the GBD study. Almost all independent injury studies have determined YLL using national life tables. CONCLUSIONS: Considerable methodological variation across independent injury BoD assessments was observed; differences were mainly apparent in the design choices and assumption parameters towards injury YLD calculations, implementation of DWs, and the choice of life table for YLL calculations. Development and use of guidelines for performing and reporting of injury BoD studies is crucial to enhance transparency and comparability of injury BoD estimates across Europe and beyond.


Subject(s)
Cost of Illness , Disabled Persons , Europe/epidemiology , Global Burden of Disease , Humans , Quality-Adjusted Life Years
18.
Sci Total Environ ; 846: 157478, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868388

ABSTRACT

A spatiotemporally static total coliform (TC) concentration threshold of five colony-forming units (CFU) per 100 mL is used in Ontario to determine whether well water is of acceptable quality for drinking. The current study sought to assess the role of TC and associated thresholds as microbial water quality parameters as the authors hypothesized that, since static TC thresholds are not evidence-based, they may not be appropriate for all well water consumers. A dataset containing the microbial water quality information of 795,023 samples (including TC and Escherichia coli (E. coli) counts) collected from 253,136 private wells in Ontario between 2010 and 2017 was used. To accurately assess the relationship between E. coli and non-E. coli TC, "non-E. coli coliform" (NEC) counts were calculated from microbial water quality data and replaced TC throughout analyses. This study analysed NEC and E. coli detection rates to determine differences between the two, and NEC:E. coli concentration ratios to assess links, if any, between NEC and E. coli contamination. Study findings suggest that spatiotemporally static NEC thresholds are not appropriate because seasonal, spatial, and well-specific susceptibility factors are associated with distinct contamination trends. For example, NEC detection rates exhibited bimodality, with summer (29.4 %) and autumn (30.2 %) detection rates being significantly higher (p < 0.05) than winter (21.9 %) and spring (19.9 %). E. coli detection rates also varied seasonally, but peaked in summer rather than autumn. As such, it is recommended that these factors be considered during the development of private well water guidelines and that static thresholds be avoided. Furthermore, the authors propose that, because NEC:E. coli concentration ratios change in the context of the aforementioned factors, they may have a role in inferring groundwater contamination mechanisms, with high ratios being associated with generalized aquifer contamination mechanisms and low ratios with localized contamination mechanisms.


Subject(s)
Drinking Water , Groundwater , Escherichia coli , Ontario , Quality Indicators, Health Care , Water Microbiology , Water Quality , Water Supply , Water Wells
19.
Environ Pollut ; 309: 119784, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35843457

ABSTRACT

Approximately 1.6 million individuals in Ontario rely on private water wells. Private well water quality in Ontario remains the responsibility of the well owner, and due to the absence of regulation, quantitative microbial risk assessment (QMRA) likely represents the most effective approach to estimating and mitigating waterborne infection risk(s) from these supplies. Annual contamination duration (i.e., contaminated days per annum) represents a central input for waterborne QMRA; however, it is typically based on laboratory studies or meta-analyses, thus representing an important limitation for risk assessment, as groundwater mesocosms cannot accurately replicate subsurface conditions. The present study sought to address these limitations using a large spatio-temporal in-situ groundwater quality dataset (>700,000 samples) to evaluate aquifer-specific E. coli die-off rates (CFU/100 mL per day decline), subsequent contamination sequence duration(s) and the likelihood of overlapping contamination events. Findings indicate median E. coli die-off rates of 0.38 CFU/100 mL per day and 0.64 CFU/100 mL per day, for private wells located in unconsolidated and consolidated aquifers, respectlvely, with mean calculated contamination sequence durations of 18 days (unconsolidated) and 11 days (consolidated). Study findings support and permit development of increasingly evidence-based, regionally- and temporally-specific quantitative waterborne risk assessment.


Subject(s)
Escherichia coli , Groundwater , Humans , Ontario , Risk Assessment , Water Quality , Water Supply
20.
Sci Total Environ ; 840: 156311, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35636550

ABSTRACT

Groundwater is a vital drinking water resource and its protection from microbiological contamination is paramount to safeguard public health. The Republic of Ireland (RoI) is characterised by the highest incidence of verocytotoxigenic Escherichia coli (VTEC) enteritis in the European Union (EU), linked to high reliance on unregulated groundwater sources (~16% of the population). Yet, the spatio-temporal factors influencing the frequency and magnitude of microbial contamination remain largely unknown, with past studies typically constrained to spatio-temporally 'limited' sampling campaigns. Accordingly, the current investigation sought to analyse an extensive spatially distributed time-series (2011-2020) of groundwater monitoring data in the RoI. The dataset, compiled by the Environmental Protection Agency (EPA), showed 'high' contamination rates, with 66.7% (88/132) of supplies testing positive for E. coli, and 29.5% (39/132) exceeding concentrations of 10MPN/100 ml (i.e. gross contamination) at least once during the 10-year monitoring period. Seasonal decomposition analyses indicate that E. coli detection rates peak during late autumn/early winter, coinciding with increases in annual rainfall, while gross contamination peaks in spring (May) and late-summer (August), likely reflecting seasonal shifts in agricultural practices. Mixed effects logistic regression modelling indicates that monitoring sources located in karst limestone are statistically associated with E. coli presence (OR = 2.76, p = 0.03) and gross contamination (OR = 2.54, p = 0.037) when compared to poorly productive aquifers (i.e., transmissivity below 10m2/d). Moreover, 5-day and 30-day antecedent rainfall increased the likelihood of E. coli contamination (OR = 1.027, p < 0.001 and OR = 1.005, p = 0.016, respectively), with the former also being associated with gross contamination (OR = 1.042, p < 0.001). As such, it is inferred that preferential flow and direct ingress of surface runoff are the most likely ingress mechanisms associated with E. coli groundwater supply contamination. The results presented are expected to inform policy change around groundwater source protection and provide insight for the development of groundwater monitoring programmes in geologically heterogeneous regions.


Subject(s)
Escherichia coli , Groundwater , Environmental Monitoring , Groundwater/microbiology , Ireland/epidemiology , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...