Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxid Redox Signal ; 20(13): 2026-42, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24251358

ABSTRACT

SIGNIFICANCE: Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through the regulation of NADPH oxidase (Nox) activity. This review focuses on relationships between Nox-regulated ROS, Rho GTPases, and cytoskeletal reorganization, in the context of cell migration. RECENT ADVANCES: It has become clear that ROS participate in the regulation of certain Rho GTPase family members, thus mediating cytoskeletal reorganization. CRITICAL ISSUES: The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex regulatory network. However, more work is needed to fully elucidate the interactions between these factors and their potential in vivo importance. FUTURE DIRECTIONS: Ultrastructural analysis, that is, electron microscopy, particularly immunogold labeling, will enable direct visualization of subcellular compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location, these data will contribute significantly to our understanding of this intricate network under physiological conditions. Based on this, in vivo and in vitro studies can then be combined to elucidate the signaling pathways involved and their targets.


Subject(s)
Actins/metabolism , Cell Movement , Cytoskeleton/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Humans
2.
Reprod Fertil Dev ; 26(4): 599-608, 2014.
Article in English | MEDLINE | ID: mdl-23607981

ABSTRACT

The aims of the present study were to assess several components of the insulin-like growth factor (IGF) system in bovine uterine flushings across different days of the oestrous cycle and to examine the relationship between the IGF system and systemic progesterone concentrations. Uterine flushings and plasma were collected from cows on Days 3, 7, 11 and 15 of the oestrous cycle. The IGF-1 concentration was more than 5-fold higher in the uterus compared with plasma on Days 7 and 11 of the cycle, with values similar on Days 3 and 15. Similarly, uterine concentrations of IGF-binding protein (IGFBP)-2 and IGFBP-3 were up to 10- and 4-fold higher than in plasma, respectively, suggesting synthesis and/or transportation of the IGFBPs into the uterus. In addition, concentrations of IGFBP-2 and IGFBP-3 were higher in the uterine horns, ipsilateral to the corpus luteum, on Day 15. This difference could indicate a local controlling mechanism with progesterone possibly playing a role in regulating the concentration of IGFBPs between the uterine horns. There was no significant relationship between systemic progesterone concentrations and IGFBP concentrations on Day 7 of the oestrous cycle. The present study shows that uterine concentrations of IGFBPs are cycle stage specific and also suggests IGF-dependent and -independent functions for IGFBPs during a time of major change in the developing embryo.


Subject(s)
Estrous Cycle/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Uterus/metabolism , Animals , Cattle , Estrous Cycle/blood , Female , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Proteins/blood , Progesterone/metabolism , Time Factors
3.
Histol Histopathol ; 27(11): 1395-406, 2012 11.
Article in English | MEDLINE | ID: mdl-23018239

ABSTRACT

Rho GTPases are a family of small GTP binding proteins most commonly known for the regulation of many cellular processes, including actin cytoskeleton re-organisation, cell proliferation, signal transduction and regulation of apoptosis. Additionally, a link between Rho GTPases and reactive oxygen species (ROS) has been shown. In line with the growing interest in the role of ROS in cell biology, the relevance of this connection is becoming increasingly clearer. ROS production is classically associated with oxidative metabolic pathways (e.g. respiratory chain, arachidonic acid). During these metabolic pathways, ROS are produced as by-products and these can be potentially toxic. However, numerous cell types contain dedicated enzymatic complexes, i.e., NADPH oxidase (Nox) complexes, for regulated production of ROS. This regulated production of ROS seems to be important for a number of fundamental cell biological processes, including cell growth, differentiation, migration, angiogenesis, aimed at maintaining tissue homeostasis. Data suggests that skin cells are capable of a regulated ROS production via Nox complexes. Members of the Rho GTPase family have been found to play a central regulatory role in Nox activity. In the present review we will focus on the involvement of Rho GTPases in regulated production of ROS with special emphasis on the skin. We will also discuss the possibility that some in vivo effects of the deletion of members of the Rho GTPase family in skin cells could potentially be linked to a reduced ability of regulated ROS production.


Subject(s)
NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Skin/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Humans , Signal Transduction/physiology
4.
Reprod Fertil Dev ; 22(8): 1198-205, 2010.
Article in English | MEDLINE | ID: mdl-20883645

ABSTRACT

In the dairy cow, low systemic concentrations of progesterone are known to be a major factor associated with early embryo loss. Endometrial expression of the gene encoding retinol-binding protein (RBP) is sensitive to small changes in progesterone on day 7 of the oestrous cycle. The objectives of the present study were to measure RBP concentrations in bovine uterine flushings and plasma across different days of the oestrous cycle and to examine the relationship between uterine RBP and systemic concentrations of progesterone. Uterine flushings and plasma were collected from cows on days 3, 7, 11 and 15 of the oestrous cycle. Uterine RBP concentrations were five- to 15-fold higher (P < 0.001) on day 15 compared with the other days and twofold higher (P < 0.001) in the uterine horn ipsilateral to the corpus luteum on day 15. RBP concentrations were similar in flushings and plasma across days 3-11; however, day 15 RBP concentrations were six- to 15-fold higher (P < 0.001) in uterine flushings. No significant relationship was found between the concentration of systemic progesterone and RBP concentrations on day 7. Overall, the results of the present study indicate a local controlling mechanism operating at the level of the endometrium to regulate RBP secretion, most likely progesterone.


Subject(s)
Estrus/metabolism , Progesterone/blood , Retinol-Binding Proteins, Cellular/metabolism , Retinol-Binding Proteins, Plasma/metabolism , Uterus/metabolism , Vitamin A/metabolism , beta Carotene/metabolism , Animals , Cattle , Estrus/blood , Female , Therapeutic Irrigation , Time Factors , Vitamin A/blood , beta Carotene/blood
5.
Tissue Eng Part A ; 16(5): 1657-65, 2010 May.
Article in English | MEDLINE | ID: mdl-20001215

ABSTRACT

Endothelial dysfunction is an important factor in cardiovascular pathology. It has been suggested that pluripotent mesenchymal stem cells (MSCs) may contribute to repair of the endothelium through paracrine pathways. Enhanced re-endothelialization may be associated with a better outcome following angioplasty procedures. We examined the effect of the delivery of MSCs to a denuded vessel in vivo. The right carotid arteries of New Zealand white rabbits were denuded using an uninflated 3-French Fogarty balloon catheter. 1 x 10(5) MSCs in a bolus of 150 microL were then delivered intraluminally and allowed to dwell for 20 min. MSC engraftment was assessed using PKH-26 labeling and transduction with adenoviral reporter genes. Vessels were examined at 2 weeks for levels of endothelialization, as well as for neointimal hyperplasia and vasomotor function. Engraftment of MSCs was noted in the vessel wall following local arterial delivery. Endothelialization was improved following bolus MSC delivery at 2 weeks post-intervention. However, this endothelium is manifestly dysfunctional as indicated by a significant impairment in vasomotor activity and a significant increase in neointimal formation post-bolus delivery. Consistent with the formation of a dysfunctional endothelium, there was a higher rate of vessel occlusions in bolus-treated vessels due to not only predominately thrombosis but also neointimal hyperplasia. Our results suggest that naive MSCs delivered as a bolus to the occluded injured vascular segment generate dysfunctional endothelium presenting a risk of vessel occlusion. Such risks are important and need to be further assessed.


Subject(s)
Carotid Arteries/pathology , Carotid Arteries/physiopathology , Endothelium, Vascular/physiopathology , Mesenchymal Stem Cell Transplantation , Adenoviridae/genetics , Animals , Endothelium, Vascular/pathology , Mesenchymal Stem Cells , Neovascularization, Physiologic , Rabbits , Transduction, Genetic , Tunica Intima/growth & development , Vasomotor System/physiopathology , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...