Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 60(6): 2195-215, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25683789

ABSTRACT

Flat, λ/2-spaced phased arrays for therapeutic ultrasound were examined in silico and in vitro. All arrays were made by combining modules made of 64 square elements with 1.5 mm inter-element spacing along both major axes. The arrays were designed to accommodate integrated, co-aligned diagnostic transducers for targeting and monitoring. Six arrays of 1024 elements (16 modules) and four arrays of 6144 elements (96 modules) were modelled and compared according to metrics such as peak pressure amplitude, focal size, ability to be electronically-steered far off-axis and grating lobe amplitude. Two 1024 element prototypes were built and measured in vitro, producing over 100 W of acoustic power. In both cases, the simulation model of the pressure amplitude field was in good agreement with values measured by hydrophone. Using one of the arrays, it was shown that the peak pressure amplitude dropped by only 24% and 25% of the on-axis peak pressure amplitude when steered to the edge of the array (40 mm) at depths of 30 mm and 50 mm. For the 6144 element arrays studied in in silico only, similarly high steerability was found: even when steered 100 mm off-axis, the pressure amplitude decrease at the focus was less than 20%, while the maximum pressure grating lobe was only 20%. Thermal simulations indicate that the modules produce more than enough acoustic power to perform rapid ablations at physiologically relevant depths and steering angles. Arrays such as proposed and tested in this study have enormous potential: their high electronic steerability suggests that they will be able to perform ablations of large volumes without the need for any mechanical translation.


Subject(s)
High-Intensity Focused Ultrasound Ablation/instrumentation , Transducers , Algorithms , High-Intensity Focused Ultrasound Ablation/methods
2.
J Ultrasound Med ; 27(4): 541-59; quiz 560-3, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18359908

ABSTRACT

Processes that can produce a biological effect with some degree of heating (ie, about 1 degrees C above the physiologic temperature) act via a thermal mechanism. Investigations with laboratory animals have documented that pulsed ultrasound can produce elevations of temperature and damage in biological tissues in vivo, particularly in the presence of bone (intracranial temperature elevation). Acoustic outputs used to induce these adverse bioeffects are within the diagnostic range, although exposure times are usually considerably longer than in clinical practice. Conditions present in early pregnancy, such as lack of perfusion, may favor bioeffects. Thermally induced teratogenesis has been shown in many animal studies, as well as several controlled human studies; however, human studies have not shown a causal relationship between diagnostic ultrasound exposure during pregnancy and adverse biological effects to the fetus. All human epidemiologic studies, however, were conducted with commercially available devices predating 1992, that is, with acoustic outputs not exceeding a spatial-peak temporal-average intensity of 94 mW/cm2. Current limits in the United States allow a spatial-peak temporal-average intensity of 720 mW/cm2 for fetal applications. The synergistic effect of a raised body temperature (febrile status) and ultrasound insonation has not been examined in depth. Available evidence, experimental or epidemiologic, is insufficient to conclude that there is a causal relationship between obstetric diagnostic ultrasound exposure and obvious adverse thermal effects to the fetus. However, very subtle effects cannot be ruled out and indicate a need for further research, although research in humans may be extremely difficult to realize.


Subject(s)
Fetus/radiation effects , Hot Temperature/adverse effects , Radiation Injuries/etiology , Radiation Injuries/physiopathology , Ultrasonography, Prenatal/adverse effects , Animals , Body Temperature , Dose-Response Relationship, Radiation , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects , Radiation Dosage , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...