Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurobiol ; 62(1): 134-47, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15452851

ABSTRACT

Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.


Subject(s)
Cell Differentiation/physiology , Chemotaxis/physiology , Ganglia, Spinal/embryology , Growth Cones/metabolism , Laminin/metabolism , Animals , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Communication/physiology , Cell Differentiation/drug effects , Chemotactic Factors/metabolism , Chemotactic Factors/pharmacology , Chemotaxis/drug effects , Chick Embryo , Cues , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Growth Cones/drug effects , Growth Cones/ultrastructure , Laminin/pharmacology , Lasers , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Neural Cell Adhesion Molecules/metabolism , Peptides/metabolism , Peptides/pharmacology , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...