Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38765992

ABSTRACT

Acute gastroenteritis remains the second leading cause of death among children under the age of 5 worldwide. While enteric viruses are the most common etiology, the drivers of their virulence remain incompletely understood. We recently found that cells infected with rotavirus, the most prevalent enteric virus in infants and young children, initiate hundreds of intercellular calcium waves that enhance both fluid secretion and viral spread. Understanding how rotavirus triggers intercellular calcium waves may allow us to design safer, more effective vaccines and therapeutics, but we still lack a mechanistic understanding of this process. In this study, we used existing virulent and attenuated rotavirus strains, as well as reverse engineered recombinants, to investigate the role of rotavirus nonstructural protein 4 (NSP4) in intercellular calcium wave induction using in vitro , organoid, and in vivo model systems. We found that the capacity to induce purinergic intercellular calcium waves (ICWs) segregated with NSP4 in both simian and murine-like rotavirus backgrounds, and NSP4 expression alone was sufficient to induce ICWs. NSP4's ability to function as a viroporin, which conducts calcium out of the endoplasmic reticulum, was necessary for ICW induction. Furthermore, viroporin activity and the resulting ICWs drove transcriptional changes indicative of innate immune activation, which were lost upon attenuation of viroporin function. Multiple aspects of RV disease severity in vivo correlated with the generation of ICWs, identifying a critical link between viroporin function, intercellular calcium waves, and enteric viral virulence.

2.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38765995

ABSTRACT

Rotavirus causes life-threatening diarrhea in children, resulting in ∼200,000 deaths/year. The current treatment during infection is Oral Rehydration Solution which successfully replenishes fluids but does not alleviate diarrhea volume or severity. As a result, there is an urgent need to better understand rotavirus pathophysiology and develop more effective pediatric therapeutics. Rotavirus primarily infects the tips of small intestinal villi, yet has far-reaching effects on cell types distant from infected cells. We recently identified that rotavirus infected cells release the purinergic signaling molecule ADP, which activates P2Y1 receptors on nearby uninfected cells in vitro . To elucidate the role of purinergic signaling via P2Y1 receptors during rotavirus infection in vivo , we used the mouse-like rotavirus strain D6/2 which generates a severe infection in mice. C57BL/6J mouse pups were given an oral gavage of D6/2 rotavirus and assessed over the course of 5-7 days. Beginning at day 1 post infection, infected pups were treated daily by oral gavage with saline or 4 mg/kg MRS2500, a selective P2Y1 antagonist. Mice were monitored for diarrhea severity, diarrhea incidence, and viral shedding. Neonatal mice were euthanized at days 3 and 5 post-infection and small intestine was collected to observe infection. MRS2500 treatment decreased the severity, prevalence, and incidence of rotavirus diarrhea. Viral stool shedding, assessed by qPCR for rotavirus gene levels, revealed that MRS2500 treated pups had significantly lower viral shedding starting at day 4 post infection compared to saline treated pups, which suggests P2Y1 signaling may enhance rotavirus replication. Finally, we found that inhibition of P2Y1 with MRS2500 limited transmitted rotavirus diarrhea to uninfected pups within a litter. Together, these results suggest that P2Y1 signaling is involved in the pathogenesis of a homologous murine rotavirus strain, making P2Y1 receptors a promising anti-diarrheal, anti-viral therapeutic target to reduce rotavirus disease burden.

3.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314824

ABSTRACT

Calcium signaling is an integral regulator of nearly every tissue. Within the intestinal epithelium, calcium is involved in the regulation of secretory activity, actin dynamics, inflammatory responses, stem cell proliferation, and many other uncharacterized cellular functions. As such, mapping calcium signaling dynamics within the intestinal epithelium can provide insight into homeostatic cellular processes and unveil unique responses to various stimuli. Human intestinal organoids (HIOs) are a high-throughput, human-derived model to study the intestinal epithelium and thus represent a useful system to investigate calcium dynamics. This paper describes a protocol to stably transduce HIOs with genetically encoded calcium indicators (GECIs), perform live fluorescence microscopy, and analyze imaging data to meaningfully characterize calcium signals. As a representative example, 3-dimensional HIOs were transduced with lentivirus to stably express GCaMP6s, a green fluorescent protein-based cytosolic GECI. The engineered HIOs were then dispersed into a single-cell suspension and seeded as monolayers. After differentiation, the HIO monolayers were infected with rotavirus and/or treated with drugs known to stimulate a calcium response. An epifluorescence microscope fitted with a temperature-controlled, humidified live-imaging chamber allowed for long-term imaging of infected or drug-treated monolayers. Following imaging, acquired images were analyzed using the freely available analysis software, ImageJ. Overall, this work establishes an adaptable pipeline for characterizing cellular signaling in HIOs.


Subject(s)
Calcium , Intestines , Humans , Calcium/analysis , Intestinal Mucosa/chemistry , Organoids/chemistry , Microscopy, Fluorescence/methods
4.
Methods Mol Biol ; 2751: 33-46, 2024.
Article in English | MEDLINE | ID: mdl-38265708

ABSTRACT

Recent technological advances in microscopy have facilitated novel approaches to investigate host-pathogen interactions. In particular, improvements in both microscope hardware and engineered biosensors have helped to overcome barriers to live-cell imaging with fluorescence microscopy. Live fluorescent microscopy allows for the detection of discrete signaling events and protein localization, improving our ability to assess the effects of pharmacologic agents, microbes, or infection with high temporal resolution. Here we describe a protocol for long-term live-cell fluorescence imaging of virus infected cell lines.


Subject(s)
Host Microbial Interactions , Optical Imaging , Host-Pathogen Interactions , Cell Line , Microscopy, Fluorescence
5.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G107-G119, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37987757

ABSTRACT

Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling.NEW & NOTEWORTHY Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.


Subject(s)
Adenosine Triphosphate , Communicable Diseases , Humans , Calcium/metabolism , Caco-2 Cells , Nucleotides , Receptors, Purinergic , Receptors, Purinergic P2Y2
6.
mBio ; 15(1): e0214523, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38112482

ABSTRACT

IMPORTANCE: Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.


Subject(s)
Calcium Signaling , Host Microbial Interactions , Inositol 1,4,5-Trisphosphate Receptors , Rotavirus , Endoplasmic Reticulum/metabolism , Rotavirus/genetics , Rotavirus/metabolism , Signal Transduction , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
7.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37609335

ABSTRACT

Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance: Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.

8.
Proc Natl Acad Sci U S A ; 120(2): e2211977120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595694

ABSTRACT

Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.


Subject(s)
Arthritis, Rheumatoid , Probiotics , Rats , Humans , Animals , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Peptides/metabolism , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Probiotics/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use
9.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36538527

ABSTRACT

Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.


Subject(s)
Diet, High-Fat , Interleukin-10 , Mice , Animals , Intestines , Macrophages/physiology , Lipids
10.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G51-G59, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36414538

ABSTRACT

Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.


Subject(s)
COVID-19 , Animals , Humans , Cell Differentiation , SARS-CoV-2 , Intestines , Intestinal Mucosa/metabolism , Organoids/metabolism
11.
J Immunol ; 207(2): 661-670, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34193605

ABSTRACT

Inflammation contributes to the pathogenesis and morbidity of wide spectrum of human diseases. The inflammatory response must be actively controlled to prevent bystander damage to tissues. Yet, the mechanisms controlling excessive inflammatory responses are poorly understood. NLRP3 inflammasome plays an important role in innate immune response to cellular infection or stress. Its activation must be tightly regulated because uncontrolled inflammasome activation is associated with a number of human diseases. p38 MAPK signaling plays an essential role in the regulation of inflammation. The role of p38 MAPK in inflammatory response associated with the expression of proinflammatory molecules is known. However, the anti-inflammatory functions of p38 MAPK are largely unknown. In this study, we show that pharmacologic inhibition or genetic deficiency of p38 MAPK leads to hyperactivation of NLRP3 inflammasome, resulting in enhanced Caspase 1 activation and IL-1ß and IL-18 production. The deficiency of p38 MAPK activity induced an increase of cytosolic Ca2+ and excessive mitochondrial Ca2+ uptake, leading to exacerbation of mitochondrial damage, which was associated with hyperactivation of NLRP3 inflammasome. In addition, mice with deficiency of p38 MAPK in granulocytes had evidence of in vivo hyperactivation of NLRP3 inflammasome and were more susceptible to LPS-induced sepsis compared with wild-type mice. Our results suggest that p38 MAPK negatively regulates NLRP3 inflammasome through control of Ca2+ mobilization. Hyperactivity of inflammasome in p38-deficient mice causes lung inflammation and increased susceptibility to septic shock.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Immunity, Innate/physiology , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Sepsis/metabolism , Shock, Septic/metabolism , Signal Transduction/physiology
12.
Gut Microbes ; 13(1): 1-21, 2021.
Article in English | MEDLINE | ID: mdl-33985416

ABSTRACT

Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.


Subject(s)
Bifidobacterium/metabolism , Colitis/microbiology , Colitis/physiopathology , Colon/immunology , Dipeptides/metabolism , Endoplasmic Reticulum Stress , Goblet Cells/immunology , Animals , Colitis/chemically induced , Colitis/immunology , Colon/microbiology , Colon/physiopathology , Endoplasmic Reticulum Chaperone BiP , Gastrointestinal Microbiome , Humans , Male , Mice , Mucin-2/genetics , Mucin-2/immunology , Trinitrobenzenesulfonic Acid/adverse effects
13.
mBio ; 12(2)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653893

ABSTRACT

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Subject(s)
Bacterial Outer Membrane/immunology , Extracellular Vesicles/immunology , Fusobacterium nucleatum/immunology , Fusobacterium nucleatum/metabolism , Inflammation/microbiology , Animals , Cells, Cultured , Colon/cytology , Culture Media/pharmacology , Cytokines/analysis , Cytokines/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Fusobacterium nucleatum/pathogenicity , Gastrointestinal Microbiome , HT29 Cells , Humans , Inflammation/immunology , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , Signal Transduction , Toll-Like Receptor 4/immunology
14.
Am J Pathol ; 191(4): 704-719, 2021 04.
Article in English | MEDLINE | ID: mdl-33516788

ABSTRACT

The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.


Subject(s)
Bacteroides/drug effects , Colon/metabolism , Inflammation/drug therapy , Interleukins/metabolism , Trinitrobenzenesulfonic Acid/pharmacology , Animals , Colitis/drug therapy , Colitis/metabolism , Colon/drug effects , Cytokines/metabolism , Dextran Sulfate/metabolism , Humans , Inflammation/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Interleukin-22
15.
ACS Infect Dis ; 7(5): 1126-1142, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33176423

ABSTRACT

It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.


Subject(s)
Clostridioides difficile , Clostridioides , Clostridiales , Humans , Monosaccharides , Mucins , Mucus
16.
Cell Mol Gastroenterol Hepatol ; 11(1): 221-248, 2021.
Article in English | MEDLINE | ID: mdl-32795610

ABSTRACT

BACKGROUND & AIMS: The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS: Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS: B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS: These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.


Subject(s)
Bifidobacterium/metabolism , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions/physiology , Serotonin/metabolism , Acetates/metabolism , Animals , Behavior, Animal/physiology , Bifidobacterium/isolation & purification , Cell Culture Techniques , Enterochromaffin Cells/metabolism , Germ-Free Life , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Models, Animal , Organoids , Receptors, Serotonin/metabolism
17.
Science ; 370(6519)2020 11 20.
Article in English | MEDLINE | ID: mdl-33214249

ABSTRACT

Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.


Subject(s)
Adenosine Diphosphate/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Rotavirus Infections/metabolism , Rotavirus/physiology , Animals , Calcium Signaling/drug effects , Calcium Signaling/genetics , Female , HEK293 Cells , Humans , Jejunum/metabolism , Jejunum/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Paracrine Communication , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/metabolism
18.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Article in English | MEDLINE | ID: mdl-32986782

ABSTRACT

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Subject(s)
Bacterial Adhesion/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Heparan Sulfate Proteoglycans/metabolism , Adhesins, Escherichia coli/genetics , Escherichia coli/metabolism , Fimbriae, Bacterial/metabolism , Humans , Intestinal Mucosa/metabolism , Virulence Factors/metabolism
19.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32804011

ABSTRACT

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Subject(s)
Clostridioides difficile/drug effects , Glyceraldehyde/analogs & derivatives , Propane/pharmacology , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/growth & development , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Drug Synergism , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Glyceraldehyde/metabolism , Glyceraldehyde/pharmacology , Humans , Limosilactobacillus reuteri/metabolism , Organoids/drug effects , Organoids/microbiology , Oxidative Stress/drug effects , Probiotics/metabolism , Propane/metabolism , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development
20.
Gut Microbes ; 11(5): 1324-1347, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32404017

ABSTRACT

Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.


Subject(s)
Gastrointestinal Microbiome , Ileum/microbiology , Polysaccharides/metabolism , Rotavirus Infections/pathology , Rotavirus Infections/virology , Rotavirus/pathogenicity , Akkermansia/growth & development , Akkermansia/metabolism , Animals , Animals, Newborn , Bacteria/classification , Bacteria/growth & development , Bacteroides/growth & development , Bacteroides/metabolism , Goblet Cells/physiology , Ileum/pathology , Intestine, Small/microbiology , Intestine, Small/pathology , Lactobacillus/growth & development , Mice , Mice, Inbred BALB C , Mucins/metabolism , RNA, Ribosomal, 16S/genetics , Rotavirus Infections/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...