Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Medicina (Kaunas) ; 60(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38929563

ABSTRACT

Background: Teriparatide is an anabolic agent for osteoporosis and is believed to improve the bone healing process. Previous studies showed that teriparatide could enhance not only fracture healing but also spine fusion. It has been reported that use of teriparatide could promote the spine fusion process and decrease mechanical complications. However, there was no consensus regarding optimal treatment duration. The purpose of this study was to compare surgical outcomes between short-duration and long-duration teriparatide treatment after lumbar fusion surgery in elderly patients. Materials and Methods: All consecutive patients older than 60 years who underwent 1-level lumbar fusion surgery for degenerative diseases between January 2015 and December 2019 were retrospectively reviewed. Based on the duration of teriparatide treatment (daily subcutaneous injection of 20 µg teriparatide), patients were subdivided into two groups: a short-duration (SD) group (<6 months) and a long-duration (LD) group (≥6 months). Mechanical complications, such as screw loosening, cage subsidence, and adjacent vertebral fractures, were investigated. Postoperative 1-year union rate was also evaluated on computed tomography. Clinical outcomes were recorded using visual analog scale (VAS) and Oswestry Disability Index (ODI). Between-group differences for these radiographic and clinical outcomes were analyzed. Results: Ninety-one patients were reviewed in this study, including sixty patients in the SD group and thirty-one patients in the LD group. Their mean age was 72.3 ± 6.2 years, and 79 patients were female. Mean T-score was -3.3 ± 0.8. Cage subsidence (6.7% vs. 3.2%), screw loosening (28.3% vs. 35.5%), and adjacent vertebral fracture (6.7% vs. 9.7%) were not significantly different between the SD and LD groups. Union rate at 1-year postoperative was 65.0% in the SD group and 87.1% in the LD group (p = 0.028). Both groups showed improvement in VAS and ODI after surgery. However, the differences of VAS from preoperative to 6 months and 1 year postoperative were significantly higher in the LD group. Conclusions: Longer teriparatide treatment after lumbar fusion surgery resulted in a higher union rate at 1-year postoperative than the shorter treatment. Also, it could be more beneficial for clinical outcomes.


Subject(s)
Spinal Fusion , Teriparatide , Humans , Teriparatide/therapeutic use , Teriparatide/administration & dosage , Female , Male , Spinal Fusion/methods , Aged , Retrospective Studies , Treatment Outcome , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/administration & dosage , Lumbar Vertebrae/surgery , Aged, 80 and over , Time Factors , Middle Aged
2.
Global Spine J ; : 21925682241230965, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279691

ABSTRACT

STUDY DESIGN: Retrospective Cohort. OBJECTIVES: Most data regarding cervical disc arthroplasty (CDA) outcomes are from highly controlled clinical trials with strict inclusion/exclusion criteria. This study aimed to identify risk factors for CDA reoperation, in "real world" clinical practice using a national insurance claims database. METHODS: The PearlDiver database was queried for patients (2010-2020) who underwent a subsequent cervical procedure following a single-level CDA. Patients with less than 2 years follow-up were excluded. Primary outcome was to evaluate risk factors for reoperation. Secondary outcome was to evaluate the types of reoperations. Risk factors were compared using descriptive statistics. Multivariate regression analyses were used to ascertain the association among risk factors and reoperation. RESULTS: Of 14,202 patients who met inclusion criteria, 916 (6.5%) underwent reoperation. Patients undergoing reoperation were slightly older with higher Elixhauser Comorbidity Index (ECI) scores, however both were not risk factors for reoperation. Patients with diagnoses such as smoking, myelopathy, inflammatory disorders, spinal deformity, trauma, or a history of prior cervical surgery were at greater risk for reoperation. No association was found between the year of index surgery and reoperation risk. The most common reoperation procedure was cervical fusion. CONCLUSIONS: As billed for in the United States since 2010, CDA was associated with a 6.5% reoperation rate over a mean follow-up time of 5.3 years. Smoking, myelopathy, inflammatory disorders, spinal deformity, and a history of prior cervical surgery or trauma are risk factors for reoperation following CDA. Though patients who underwent a reoperation were older, age was not found to be an independent risk factor for a subsequent procedure.

3.
J Neurosurg Spine ; 40(3): 282-290, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38100758

ABSTRACT

OBJECTIVE: Long-term meta-analysis of cervical disc arthroplasty (CDA) trials report lower rates of subsequent cervical spine surgical procedures with CDA compared with anterior cervical discectomy and fusion (ACDF). The objective of this study was to compare the rate of subsequent cervical spine surgery in single-level CDA-treated patients to that of a matched cohort of single-level ACDF-treated patients by using records from 2010 to 2021 included in a large national administrative claims database (PearlDiver). METHODS: This retrospective matched-cohort study used a large national insurance claims database; 525,510 patients who had undergone a single-level ACDF or CDA between 2010 and 2021 were identified. Patients with other same-day spine procedures, as well as those for trauma, infection, or tumor, were excluded, yielding 148,531 patients. ACDF patients were matched 2:1 to CDA patients on the basis of clinical and demographic characteristics. The primary outcome was the overall incidence of all-cause cervical reoperation after index surgery. Secondary outcomes included readmission, any adverse event within 90 days, and overall reintervention after index surgery. Multivariable logistic regression analyses were adjusted for covariates and were employed to estimate the effect of the index ACDF or CDA procedure on patient outcomes. Survival was assessed using Kaplan-Meier estimation, and differences between ACDF- and CDA-treated patients were compared using log-rank tests. RESULTS: After the patients were matched, 28,795 ACDF patients to 14,504 CDA patients were included. ACDF patients had higher rates of 90-day adverse events (18.4% vs 14.6%, adjusted odds ratio [aOR] 0.77, 95% CI 0.73-0.82, p < 0.001) and readmission (11.5% vs 9.7%, aOR 0.87, 95% CI 0.81-0.93, p < 0.001). Over a mean 4.3 years of follow-up, 5.0% of ACDF patients and 5.4% of CDA patients underwent reoperation (aOR 1.09, 95% CI 1.00-1.19, p = 0.059). The rate of aggregate reintervention was higher in CDA patients than in ACDF patients (11.7% vs 10.7%, aOR 1.10, p = 0.002). The Kaplan-Meier 10-year reoperation-free survival rate was worse for CDA than ACDF (91.0% vs 92.0%, p = 0.05), as was the rate of reintervention-free survival (81.2% vs 82.0%, p = 0.003). CONCLUSIONS: Single-level CDA was associated with a similar rate of reoperation and higher rate of subsequent injections when compared with a matched cohort that underwent single-level ACDF. CDA was associated with lower rates of 90-day adverse events and readmissions.


Subject(s)
Arthroplasty , Diskectomy , Humans , Reoperation , Cohort Studies , Retrospective Studies
4.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055799

ABSTRACT

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Humans , Rats , Animals , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/therapy , Low Back Pain/complications , Neuronal Outgrowth
5.
Front Cell Dev Biol ; 11: 1259844, 2023.
Article in English | MEDLINE | ID: mdl-37779900

ABSTRACT

Like most eukaryotes, the pre-metazoan social amoeba Dictyostelium depends on the SCF (Skp1/cullin-1/F-box protein) family of E3 ubiquitin ligases to regulate its proteome. In Dictyostelium, starvation induces a transition from unicellular feeding to a multicellular slug that responds to external signals to culminate into a fruiting body containing terminally differentiated stalk and spore cells. These transitions are subject to regulation by F-box proteins and O2-dependent posttranslational modifications of Skp1. Here we examine in greater depth the essential role of FbxwD and Vwa1, an intracellular vault protein inter-alpha-trypsin (VIT) and von Willebrand factor-A (vWFA) domain containing protein that was found in the FbxwD interactome by co-immunoprecipitation. Reciprocal co-IPs using gene-tagged strains confirmed the interaction and similar changes in protein levels during multicellular development suggested co-functioning. FbxwD overexpression and proteasome inhibitors did not affect Vwa1 levels suggesting a non-substrate relationship. Forced FbxwD overexpression in slug tip cells where it is normally enriched interfered with terminal cell differentiation by a mechanism that depended on its F-box and RING domains, and on Vwa1 expression itself. Whereas vwa1-disruption alone did not affect development, overexpression of either of its three conserved domains arrested development but the effect depended on Vwa1 expression. Based on structure predictions, we propose that the Vwa1 domains exert their negative effect by artificially activating Vwa1 from an autoinhibited state, which in turn imbalances its synergistic function with FbxwD. Autoinhibition or homodimerization might be relevant to the poorly understood tumor suppressor role of the evolutionarily related VWA5A/BCSC-1 in humans.

6.
Stud Health Technol Inform ; 306: 371-378, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37638938

ABSTRACT

This research has analyzed the accessibility of the current metaverse platforms from the perspective of screen reader and switch scanning interface users, using the mixture of quantitative and qualitative assessments. To this end, the two representative metaverse platforms, ZEPETO and Roblox, were targeted. As a result, it was found that the current metaverse platforms are not carefully designed with accessibility in mind. Many content elements and controls in the metaverse environment suffers from the lack of alternative text description and appropriate markups which are essential to make it perceivable and recognizable by assistive technology. People with severe disabilities are very likely to find it difficult or impossible to independently navigate the current metaverse environment, because they do not provide any viable means of orientation and mobility in the 3D virtual space at all. The UI/UX of the current metaverse platforms also do not provide adequate feedback to help people with limited sensory/motor functions to understand the purpose and function of it. Overall, thereby, the current metaverse environment is not robust enough to reliably work with a wide range of assistive technologies.


Subject(s)
Self-Help Devices , Humans
7.
Glycobiology ; 33(3): 225-244, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36250576

ABSTRACT

O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium-a protist that is more related to fungi and metazoa. Immunofluorescence probing with the fucose-specific Aleuria aurantia lectin (AAL) and biochemical cell fractionation combined with western blotting suggested the occurrence of nucleocytoplasmic fucosylation. The absence of reactivity in mutants deleted in spy or gmd (unable to synthesize GDP-Fuc) suggested monofucosylation mediated by Spy. Genetic ablation of the modE locus, previously predicted to encode a GDP-fucose transporter, confirmed its necessity for fucosylation in the secretory pathway but not for the nucleocytoplasmic proteins. Affinity capture of these proteins combined with mass spectrometry confirmed monofucosylation of Ser and Thr residues of several known nucleocytoplasmic proteins. As in Toxoplasma, the Spy OFT was required for optimal proliferation of Dictyostelium under laboratory conditions. These findings support a new phylogenetic analysis of OGT and OFT evolution that indicates their occurrence in the last eukaryotic common ancestor but mostly complementary presence in its eukaryotic descendants with the notable exception that both occur in red algae and plants. Their generally exclusive expression, high degree of conservation, and shared monoglycosylation targets suggest overlapping roles in physiological regulation.


Subject(s)
Dictyostelium , Fucosyltransferases , Animals , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Dictyostelium/genetics , Fucose/metabolism , Phylogeny , Bacteria/metabolism , N-Acetylglucosaminyltransferases/genetics
8.
Int J Spine Surg ; 16(S1): S61-S68, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35387890

ABSTRACT

Lateral lumbar interbody fusion (LLIF) is an advantageous approach for spinal arthrodesis for a wide range of spinal disorders including degenerative, genetic, and traumatic conditions. LLIF techniques have evolved over the past 15 years regarding surgical approach, with concomitant improvements in implant material design. Bioactive materials have been a focus in the development of novel methods, which reduce the risk of subsidence and pseudarthrosis. Historically, polyetheretherketone and titanium cages have been selected for their advantageous biomechanical properties; however, both have their limitations, regarding optimal modulus or osseointegrative properties. Recent modifications to these 2 materials have focused on devising bioactive implants, which may enhance the rate of bony fusion in spinal arthrodesis by addressing the shortcomings of each. Specific emphasis has been placed on developing improvements in surface coating, porosity, microroughness, and nanotopography of interbody cages. This has been coupled with advances in additive manufacturing to generate cages with ideal biomechanical properties. Three-dimensional-printed titanium cages may be particularly beneficial in spinal arthrodesis during LLIF and reduce the historical rates of subsidence and pseudarthrosis by combining a number of these putatively beneficial biomaterial properties.

9.
Global Spine J ; 12(5): 756-764, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33047622

ABSTRACT

STUDY DESIGN: Post hoc comparison using single-site data from 4 multicenter randomized controlled trials. OBJECTIVES: Discogenic back pain is associated with significant morbidity and medical cost. Several terminated, unreported randomized controlled trials have studied the effect of intradiscal biologic injections. Here we report single-center outcomes from these trials to determine if there is clinical improvement associated with these intradiscal injections. METHODS: Post hoc comparison was performed using single-site data from 4 similar multi-center randomized controlled trials. All trials evaluated an injectable therapy (growth factor, fibrin sealant, or stem cells) for symptomatic lumbar disc disease with near-identical inclusion and exclusion criteria. Demographics and patient reported outcomes were analyzed across treatment arms postinjection. RESULTS: A total of 38 patients were treated with biologic agents and 12 were treated with control saline injections. There was a significant decrease in visual analogue score (VAS) pain for both the investigational and saline groups up to 12 months postinjection (P < .01). There was no significant difference in VAS scores between the saline and investigational groups at 12 months. Similarly, there was significant improvement in patient-reported disability scores in both the investigational and saline groups at all time points. There were no significant differences in disability score improvement between the saline and investigational treatment groups at 12 months postinjection. CONCLUSIONS: A single-center analysis of 4 randomized controlled studies demonstrated no difference in outcomes between therapeutic intradiscal agents (growth factor, fibrin sealant, or stem cells) and control saline groups. In all groups, patient reported pain and disability scores decreased significantly. Future studies are needed to evaluate the therapeutic benefit of any intradiscal injections.

11.
Int J Spine Surg ; 15(s1): 68-93, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34376497

ABSTRACT

BACKGROUND: Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD: Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS: This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION: Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.

12.
Int J Spine Surg ; 15(s1): 94-103, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34376498

ABSTRACT

BACKGROUND: This manuscript is a review of the literature investigating the use of mesenchymal stem cells (MSCs) being applied in the setting of spinal fusion surgery. We mention the rates of pseudarthrosis, discuss current bone grafting options, and examine the preclinical and clinical outcomes of utilizing MSCs to assist in successfully fusing the spine. METHODS: A thorough literature review was conducted to look at current and previous preclinical and clinical studies using stem cells for spinal fusion augmentation. Searches for PubMed/MEDLINE and ClinicalTrials.gov through January 2021 were conducted for literature mentioning stem cells and spinal fusion. RESULTS: All preclinical and clinical studies investigating MSC use in spinal fusion were examined. We found 19 preclinical and 17 clinical studies. The majority of studies, both preclinical and clinical, were heterogeneous in design due to different osteoconductive scaffolds, cells, and techniques used. Preclinical studies showed promising outcomes in animal models when using appropriate osteoconductive scaffolds and factors for osteogenic differentiation. Similarly, clinical studies have promising outcomes but differ in their methodologies, surgical techniques, and materials used, making it difficult to adequately compare between the studies. CONCLUSION: MSCs may be a promising option to use to augment grafting for spinal fusion surgery. MSCs must be used with appropriate osteoconductive scaffolds. Cell-based allografts and the optimization of their use have yet to be fully elucidated. Further studies are necessary to determine the efficacy of MSCs with different osteoconductive scaffolds and growth/osteogenic differentiation factors. LEVEL OF EVIDENCE: 3.

13.
Int J Spine Surg ; 15(4): 633-644, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34281951

ABSTRACT

BACKGROUND: Many early cervical total disc replacements (TDRs) produced motion through a ball-and-socket action, with metal endplates articulating with a plastic core. Polyetheretherketone (PEEK) is used increasingly for spinal implants due to its mechanical properties and lack of artifacts on imaging. A TDR was designed with titanium-coated PEEK endplates and a ceramic core. The purpose of this study was to compare this TDR with anterior cervical discectomy and fusion (ACDF) to treat single-level cervical disc degeneration. METHODS: This was a prospective, nonrandomized, historically controlled, multicenter US Food and Drug Administration (FDA) Investigational Device Exemption (IDE) trial. Patients received the PEEK-on-ceramic Simplify® Cervical Artificial Disc (n = 150). The historic control group included 117 propensity-matched ACDF patients from an earlier IDE trial. The primary outcome was a composite success classification at the 24-month follow-up. Outcome measures included the Neck Disability Index (NDI), neurological status, adverse events, subsequent surgery, a visual analog scale assessing neck and arm pain, and the Dysphagia Handicap Index. Radiographic assessment included flexion/extension range of motion and heterotopic ossification. Facet joints were assessed at 24 months using MRI. RESULTS: The success rate was significantly greater in the TDR group vs the ACDF group (93.0% vs 73.6%; P < .001). Mean NDI, neck pain, and arm pain scores improved significantly in both groups at all follow-up points. Mean NDI scores in the TDR group were significantly lower than ACDF scores at all follow-up points. There were no significant differences in the rates of serious adverse events. The range of motion of the TDR level had increased significantly by 3 months and remained so throughout follow-up. Facet joint assessment by MRI in the TDR group showed little change from preoperation. CONCLUSIONS: The TDR had an acceptable safety profile and a significantly greater composite success rate than ACDF. These results support that the PEEK-on-ceramic TDR is a viable alternative to ACDF for single-level symptomatic disc degeneration. CLINICAL RELEVANCE: This study found that the PEEK-on-ceramic TDR is a viable treatment for symptoms related to cervical disc degeneration and offers similar or superior outcomes compared with fusion. LEVEL OF EVIDENCE: 2.

14.
Med Phys ; 48(7): 3860-3877, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33905560

ABSTRACT

PURPOSE: Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy due to its ability to better quantify activity in overlapping structures. An important element of assessing the response of bone metastasis is accurate image segmentation. However, limited by the properties of QBSPECT images, the segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts. This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background. METHODS: We present a new unsupervised segmentation loss function and its semi- and supervised variants for training a convolutional neural network (ConvNet). The loss functions were developed based on the objective function of the classical Fuzzy C-means (FCM) algorithm. The first proposed loss function can be computed within the input image itself without any ground truth labels, and is thus unsupervised; the proposed supervised loss function follows the traditional paradigm of the deep learning-based segmentation methods and leverages ground truth labels during training. The last loss function is a combination of the first and the second and includes a weighting parameter, which enables semi-supervised segmentation using deep learning neural network. EXPERIMENTS AND RESULTS: We conducted a comprehensive study to compare our proposed methods with ConvNets trained using supervised, cross-entropy and Dice loss functions, and conventional clustering methods. The Dice similarity coefficient (DSC) and several other metrics were used as figures of merit as applied to the task of delineating lesion and bone in both simulated and clinical SPECT/CT images. We experimentally demonstrated that the proposed methods yielded good segmentation results on a clinical dataset even though the training was done using realistic simulated images. On simulated SPECT/CT, the proposed unsupervised model's accuracy was greater than the conventional clustering methods while reducing computation time by 200-fold. For the clinical QBSPECT/CT, the proposed semi-supervised ConvNet model, trained using simulated images, produced DSCs of 0.75 and 0.74 for lesion and bone segmentation in SPECT, and a DSC of 0.79 bone segmentation of CT images. These DSCs were larger than that for standard segmentation loss functions by > 0.4 for SPECT segmentation, and > 0.07 for CT segmentation with P-values < 0.001 from a paired t-test. CONCLUSIONS: A ConvNet-based image segmentation method that uses novel loss functions was developed and evaluated. The method can operate in unsupervised, semi-supervised, or fully-supervised modes depending on the availability of annotated training data. The results demonstrated that the proposed method provides fast and robust lesion and bone segmentation for QBSPECT/CT. The method can potentially be applied to other medical image segmentation applications.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Cluster Analysis , Neural Networks, Computer , Single Photon Emission Computed Tomography Computed Tomography
15.
Stem Cells Transl Med ; 10(5): 797-809, 2021 05.
Article in English | MEDLINE | ID: mdl-33512772

ABSTRACT

Replacement of lost cranial bone (partly mesodermal and partly neural crest-derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow-derived mesenchymal stromal cells (mesoderm-derived BM-MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell-mesenchymal progenitor cells (iNCC-MPCs) improves implant-to-bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC-MPCs. BM-MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (µCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC-MPC-Luc2 vs BM-MSC-Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, µCT analysis showed enhanced structural parameters in the iNCC-MPC-Luc2 group and increased bone volume in the BM-MSC-Luc2 group compared to controls. Histology demonstrated improved integration of iNCC-MPC-Luc2 allografts compared to BM-MSC-Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft-host interphase in cell-seeded groups. The iNCC-MPC-Luc2 group also demonstrated improved biomechanical properties compared to BM-MSC-Luc2 implants and cell-free controls. Our results show an improved integration of iNCC-MPC-Luc2-coated allografts compared to BM-MSC-Luc2 and controls, suggesting the use of iNCC-MPCs as potential cell source for cranial bone repair.


Subject(s)
Bone-Implant Interface , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Allografts , Animals , Bone Marrow Cells , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred NOD , Mice, SCID , Neural Crest/cytology , Osseointegration , Skull/diagnostic imaging , X-Ray Microtomography
16.
J Biol Chem ; 296: 100110, 2021.
Article in English | MEDLINE | ID: mdl-33229435

ABSTRACT

Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galß(1,4)-GlcNAcß(1,3)-]n glycan extensions. They are found on both N- and O-glycoproteins and glycolipids and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of ß1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and ß1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+ and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galß(1,4)-GlcNAcß(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ coevolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.


Subject(s)
Amino Sugars/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , N-Acetylglucosaminyltransferases/metabolism , Amino Sugars/chemistry , Binding Sites , Catalysis , Chromatography, Gel , HEK293 Cells , Humans , N-Acetylglucosaminyltransferases/chemistry , Substrate Specificity
17.
J Biol Chem ; 296: 100039, 2021.
Article in English | MEDLINE | ID: mdl-33158988

ABSTRACT

Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals, O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing, and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild-type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.


Subject(s)
Cell Nucleus/enzymology , Cytosol/enzymology , Fucosyltransferases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Toxoplasma/pathogenicity , Virulence , Animals , Fucosyltransferases/genetics , Mice , Mutation , Protozoan Proteins/genetics
18.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352698

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with advanced glycation end product (AGE) enrichment and considered a risk factor for intervertebral disc (IVD) degeneration. We hypothesized that systemic AGE inhibition, achieved using pyridoxamine (PM), attenuates IVD degeneration in T2DM rats. To induce IVD degeneration, lumbar disc injury or sham surgery was performed on Zucker Diabetic Sprague Dawley (ZDSD) or control Sprague Dawley (SD) rats. Post-surgery, IVD-injured ZDSD rats received daily PM dissolved in drinking water or water only. The resulting groups were SD uninjured, SD injured, ZDSD uninjured, ZDSD injured, and ZDSD injured + PM. Levels of blood glycation and disc degeneration were investigated. At week 8 post-surgery, glycated serum protein (GSP) levels were increased in ZDSDs compared to SDs. PM treatment attenuated this increase. Micro-MRI analysis demonstrated IVD dehydration in injured versus uninjured SDs and ZDSDs. In the ZDSD injured + PM group, IVD dehydration was diminished compared to ZDSD injured. AGE levels were decreased and aggrecan levels increased in ZDSD injured + PM versus ZDSD injured rats. Histological and immunohistochemical analyses further supported the beneficial effect of PM. In summary, PM attenuated GSP levels and IVD degeneration processes in ZDSD rats, demonstrating its potential to attenuate IVD degeneration in addition to managing glycemia in T2DM.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Glycation End Products, Advanced/antagonists & inhibitors , Intervertebral Disc Degeneration/prevention & control , Pyridoxamine/pharmacology , Vitamin B Complex/pharmacology , Animals , Blood Glucose , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/pathology , Male , Rats , Rats, Sprague-Dawley , Rats, Zucker
19.
Eur J Cancer ; 140: 19-27, 2020 11.
Article in English | MEDLINE | ID: mdl-33039810

ABSTRACT

BACKGROUND: Hand-foot skin reaction (HFSR) is the most common adverse event during sorafenib treatment in patients with hepatocellular carcinoma (HCC). In the present study, we aimed to investigate the role of urea cream in the prevention of HFSR or amelioration of HFSR severity. PATIENTS AND METHODS: Patients with HCC were treated with either placebo cream or urea cream for 12 weeks concomitantly with sorafenib treatment. HFSR development, the Hand-Foot Skin Reaction and Quality of Life (HF-QoL) questionnaire score, and adverse events were assessed at 2, 4, 8 and 12 weeks. RESULTS: Of the 288 patients, 247 patients, with 117 patients in the placebo control group and 130 patients in the urea cream group, were analysed. The urea cream group showed a trend towards a lower cumulative incidence of any-grade HFSR (log-rank, P = 0.247) and severe HFSR of grade II or higher (log-rank, P = 0.394) without statistical significance. In the incidence by time point, the incidence of severe HFSR of grade II or higher was significantly lower in the urea cream group than in the placebo control group at 2 weeks (13.8% versus 23.9%, P = 0.042). The urea cream group showed a significantly better HF-QoL questionnaire score than the placebo control group (11.8 versus 19.7, P = 0.014) at 12 weeks. CONCLUSIONS: Treatment with urea cream showed a lower incidence of severe sorafenib-induced HFSR at 2 weeks and reduced the tendency of HFSR development in HCC patients. Therefore, treatment with urea cream may be considered for prophylaxis or improvement of HFSR grade in HCC patients treated with sorafenib. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03212625).


Subject(s)
Hand-Foot Syndrome/drug therapy , Hand-Foot Syndrome/etiology , Skin Cream/therapeutic use , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Sorafenib/adverse effects , Urea/therapeutic use , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Double-Blind Method , Female , Humans , Liver Neoplasms/drug therapy , Male , Middle Aged , Quality of Life , Skin/drug effects , Sorafenib/therapeutic use
20.
Sci Signal ; 13(639)2020 07 07.
Article in English | MEDLINE | ID: mdl-32636308

ABSTRACT

Aberrant regulation of metabolic kinases by altered redox homeostasis substantially contributes to aging and various diseases, such as diabetes. We found that the catalytic activity of a conserved family of fructosamine-3-kinases (FN3Ks), which are evolutionarily related to eukaryotic protein kinases, is regulated by redox-sensitive cysteine residues in the kinase domain. The crystal structure of the FN3K homolog from Arabidopsis thaliana revealed that it forms an unexpected strand-exchange dimer in which the ATP-binding P-loop and adjoining ß strands are swapped between two chains in the dimer. This dimeric configuration is characterized by strained interchain disulfide bonds that stabilize the P-loop in an extended conformation. Mutational analysis and solution studies confirmed that the strained disulfides function as redox "switches" to reversibly regulate the activity and dimerization of FN3K. Human FN3K, which contains an equivalent P-loop Cys, was also redox sensitive, whereas ancestral bacterial FN3K homologs, which lack a P-loop Cys, were not. Furthermore, CRISPR-mediated knockout of FN3K in human liver cancer cells altered the abundance of redox metabolites, including an increase in glutathione. We propose that redox regulation evolved in FN3K homologs in response to changing cellular redox conditions. Our findings provide insights into the origin and evolution of redox regulation in the protein kinase superfamily and may open new avenues for targeting human FN3K in diabetic complications.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Humans , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation, beta-Strand , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...