Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 6139-6142, 2020 07.
Article in English | MEDLINE | ID: mdl-33019372

ABSTRACT

Recently the world population with diabetes has increased significantly, and the market demand for noninvasive blood glucose monitoring has increased accordingly. Our previous study demonstrated the capability to detect glucose through the direct observation of glucose Raman fingerprint peaks from in vivo skin but using a benchtop device. From the perspective of commercialization, miniaturized devices are expected to make more impact on the market than bulky benchtop devices. In this study, as an effort for commercialization of noninvasive glucose sensing technology, we investigate the relationship between Raman spectrometer specification, especially collection efficiency, and glucose prediction performance. Raman spectra were synthesized at given spectrometer collection efficiencies in computer simulation, in which spectra are designed to contain glucose signal at specific concentrations. Then, we estimated glucose concentrations back using regression analysis and evaluated prediction performances. Finally, the relationship was analyzed between the collection efficiencies and glucose prediction performances. In order to mimic actual conditions with skin tissue, Monte-Carlo simulations were conducted to count the number of Raman photons escaping from the skin surface in a multi-layered skin model. As the collection efficiency decreased from 3.2 % to 0.2 %, the correlation coefficient between the actual and predicted glucose concentrations dropped from 0.91 to 0.35. The glucose Raman peaks at 1125 cm-1 was identified as the most important wavelength for glucose sensing. This study may help identify optimal Raman spectrometer specifications for transcutaneous blood glucose sensing in miniaturized devices and commercialize noninvasive blood glucose sensors in Raman spectroscopy.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Computer Simulation , Glucose , Miniaturization
2.
Opt Lett ; 35(11): 1847-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20517437

ABSTRACT

We present what we believe to be the first study of deep subwavelength surface modes in binary metal-dielectric metamaterials. By employing anomalous coupling in binary periodicity, peculiar properties of band structure and eigenmode symmetry are obtained. We show that strongly confined plasmonic Tamm-like and Shockley-like surface modes can be formed at the termination of the array. We clarify the character of each surface mode and analyze its unique symmetry with the corresponding band structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...