Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38981101

ABSTRACT

Organometallic molecules are promising for molecular electronic devices due to their potential to improve electrical conductance through access to complex orbital covalency that is not available to light-element organic molecules. However, studies of the formation of organometallic monolayers and their charge transport properties are scarce. Here, we report the cluster formation and charge transport properties of gold-triarylbismuthane-gold molecular junctions. We found that triarylbismuthane molecules with -CN anchoring groups form clusters during the creation of self-assembled submonolayers. This clustering is attributed to strong interactions between the bismuth (Bi) center and the nitrogen atom in the -CN group of adjacent molecules. Examination of the influence of -NH2 and -CN anchoring groups on junction conductance revealed that, despite a stronger binding energy between the -NH2 group and gold, the conductance per molecular unit (i.e., molecule for the -NH2 group and cluster for the -CN group) is higher with the -CN anchoring group. Further analysis showed that an increase in the number of -CN groups from one to three within the junctions leads to a decrease in conductance while increasing the size of the cluster. This demonstrates the significant effects of different anchoring groups and the impact of varying the number of -CN groups on both the charge transport and cluster formation. This study highlights the importance of selecting the appropriate anchoring group in the design of molecular junctions. Additionally, controlling the size and formation of clusters can be a strategic approach to engineering charge transport in molecular junctions.

2.
Dalton Trans ; 52(36): 12597-12603, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37670510

ABSTRACT

Hypervalent (three-center, four-electron) bonding in organobismuth complexes has been extensively studied due to its ability to affect molecular geometry, dynamic behavior, or to stabilize the ligand scaffold. This work addresses the effects of this bonding on reactivity, catalytic activity, redox processes, and its potential applications in biosciences, materials science, and small molecule activation.

3.
Chempluschem ; 88(2): e202200450, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36782373

ABSTRACT

Two hypervalent trifluoromethyl organobismuth complexes were prepared from commercially available chiral amines, (R)-1-cyclohexylethylamine and (1R, 2R, 3R, 5S)-(-)-isopinocampheylamine; however, only the complex from the latter amine was prepared as a single stereoisomer. Both organobismuth complexes were fully characterized by NMR spectroscopy and single-crystal X-ray crystallography, revealing that the structures were similar to previously reported complexes with a hypervalent Bi-N bond. The complexes were catalytically active in olefin difluorocarbenation with Ruppert-Prakash reagent (TMS-CF3 ) used as a terminal source of CF2 . The catalyst derived from isopinocampheylamine was screened with three prochiral olefins of various reactivity in DCM and toluene. All reactions afforded the 1,1-difluorocyclopropanes in good yields, but no enantiomeric excess was observed.

4.
RSC Adv ; 11(46): 28602-28613, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478534

ABSTRACT

In order to stabilize a 10-P-3 species with C 2v symmetry and two lone pairs on the central phosphorus atom, a specialized ligand is required. Using an NCN pincer, previous efforts to enforce this planarized geometry at P resulted in the formation of a C s-symmetric, 10π-electron benzazaphosphole that existed as a dynamic "bell-clapper" in solution. Here, OCO pincers 1 and 2 were synthesized, operating under the hypothesis that the more electron-withdrawing oxygen donors would better stabilize the 3-center, 4-electron O-P-O bond of the 10-P-3 target and the sp3-hybridized benzylic carbon atoms would prevent the formation of aromatic P-heterocycles. However, subjecting 1 to a metalation/phosphination/reduction sequence afforded cyclotriphosphane 3, resulting from trimerization of the P(i) center unbound by its oxygen donors. Pincer 2 featuring four benzylic CF3 groups was expected to strengthen the O-P-O bond of the target, but after metal-halogen exchange and quenching with PCl3, unexpected cyclization with loss of CH3Cl was observed to give monochlorinated 5. Treatment of 5 with (p-CH3)C6H4MgBr generated crystalline P-(p-Tol) derivative 6, which was characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. The complex 19F NMR spectra of 5 and 6 observed experimentally, were reproduced by simulations with MestreNova.

5.
Nature ; 542(7639): 80-85, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28114300

ABSTRACT

The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.


Subject(s)
Alkenes/chemistry , Alkenes/chemical synthesis , Chlorides/chemistry , Molybdenum/chemistry , Catalysis , Fluorocarbons/chemistry , Ligands
6.
Chemistry ; 22(49): 17562-17565, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27654835

ABSTRACT

The trapping of a phosphinidene (R-P) in an NCN pincer is presented. Stabilized phosphinidene 1 was characterized by 31 P{1 H}, 1 H, and 13 C{1 H} NMR spectroscopy, exhibiting an averaged C2v symmetry in solution between -60 and 60 °C. In the solid state, the phosphinidene is coordinated by one adjacent N atom featuring a formal P-N bond (1.757(2) Å) to give a five-membered ring with some aromatic character, confirmed by DFT calculations (B3LYP-D3/6-311G**++) to be the ground-state structure. Equilibration of the two N ligands occurs rapidly in solution via a "bell-clapper"-type process through an associative symmetric transition state calculated to lie 4.0 kcal mol-1 above the ground state.

7.
Organometallics ; 33(19): 5334-5341, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25328267

ABSTRACT

Imido alkylidene complexes of Mo and W and oxo alkylidene complexes of W that contain thiophenoxide ligands of the type S-2,3,5,6-Ph4C6H (STPP) and S-2,6-(mesityl)2C6H3 (SHMT = S-hexamethylterphenyl) have been prepared in order to compare their metathesis activity with that of the analogous phenoxide complexes. All thiolate complexes were significantly slower (up to ∼10× slower) for the metathesis homocoupling of 1-octene or polymerization of 2,3-dicarbomethoxynorbornene, and none of them was Z-selective. The slower rates could be attributed to the greater σ-donating ability of a thiophenoxide versus the analogous phenoxide and consequently a higher electron density at the metal in the thiophenoxide complexes.

8.
Org Lett ; 16(1): 200-3, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24313338

ABSTRACT

Reductive elimination of ethane from the palladium(IV) complex [PdMe3(bpy)I] (bpy = 2,2'-bipyridine) is studied by electrospray ionization mass spectrometry. Palladium(IV) complexes can be detected as binuclear clusters [Pd2Me6I(bpy)2](+) or as complexes [PdMe3(bpy)(L)](+) stabilized by an electron-donating ligand L. Fragmentation of all palladium(IV) complexes is dominated by elimination of ethane which corresponds to the reductive elimination coupling of the methyl groups. The associated energy demands for different complexes reveal that the mononuclear complexes with poorly electron-donating ligands provide the fastest reaction.

9.
Chem Commun (Camb) ; (23): 3463-5, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503905

ABSTRACT

The concept of using disulfides as an oxidant for Cu(i) is introduced as part of a Cu-catalyzed process leading to the formation of benzothiazole from an iminodisulfide under an inert atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...