Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293182

ABSTRACT

A balanced and varied diet provides diverse beneficial effects on health, such as adequate micronutrient availability and a gut microbiome in homeostasis. Besides their participation in biochemical processes as cofactors and coenzymes, vitamins and minerals have an immunoregulatory function; meanwhile, gut microbiota and its metabolites coordinate directly and indirectly the cell response through the interaction with the host receptors. Malnourishment is a crucial risk factor for several pathologies, and its involvement during the Coronavirus Disease 2019 pandemic has been reported. This pandemic has caused a significant decline in the worldwide population, especially those with chronic diseases, reduced physical activity, and elder age. Diet and gut microbiota composition are probable causes for this susceptibility, and its supplementation can play a role in reestablishing microbial homeostasis and improving immunity response against Coronavirus Disease 2019 infection and recovery. This study reviews the role of micronutrients and microbiomes in the risk of infection, the severity of disease, and the Coronavirus Disease 2019 sequelae.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Aged , Micronutrients/pharmacology , Vitamins/pharmacology , Coenzymes
2.
Microorganisms ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889147

ABSTRACT

The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.

3.
Biomolecules ; 11(11)2021 11 09.
Article in English | MEDLINE | ID: mdl-34827656

ABSTRACT

Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.


Subject(s)
Gastrointestinal Microbiome , Animals , Ecosystem , Lupinus , Mice
4.
Cells ; 10(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208037

ABSTRACT

Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.


Subject(s)
Extracellular Traps/physiology , Mucous Membrane/immunology , Skin Diseases/immunology , Epithelial Cells/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/physiology , Neutrophils/immunology , Neutrophils/physiology , Skin Diseases/pathology
5.
Int J Immunopathol Pharmacol ; 34: 2058738420958949, 2020.
Article in English | MEDLINE | ID: mdl-33373277

ABSTRACT

Neutrophils represent the first line of host cellular defense against various pathogens. The most recently described microbicidal mechanism of these cells is the release of neutrophil extracellular traps (NET). Currently, a wide range of chemical and biological stimuli are known to induce this response; however, the effect of short-chain fatty acids (SCFAs) on the induction of NET is still unknown. SCFAs are produced mainly by bacterial fermentation of dietary fiber and are found in host tissues and blood. This study aimed to determine whether physiological levels of SCFAs can induce the formation of NET. Previously reported concentrations of SCFAs (as found in the colonic lumen and peripheral blood in postprandial and basal states) were used to stimulate the neutrophils. In order to determine the signaling pathway utilized by SCFAs, we tested the inhibition of the Free Fatty Acid 2 Receptor (FFA2R) expressed in neutrophils using CATPB, the inhibitor of FFA2R, genistein, an inhibitor of the downstream Gα/q11 proteins and DPI, an inhibitor of the NADPH oxidase complex. The SCFAs at colonic intestinal lumen concentrations were able to induce the formation of NET, and when tested at concentrations found in the peripheral blood, only acetic acid at 100 µM (fasting equivalent) and 700 µM (postprandial equivalent) was found to induce the formation of NET. The administration of the competitive inhibitor against the receptor or blockade of relevant G protein signaling and the inhibition of NADPH oxidase complex decreased NET release. SCFAs stimulate NET formation in vitro and this effect is mediated, in part, by the FFA2R.


Subject(s)
Acetic Acid/pharmacology , Extracellular Traps/metabolism , Fatty Acids, Volatile/metabolism , Neutrophils/metabolism , Extracellular Traps/drug effects , Fatty Acids, Volatile/pharmacology , Humans , Hydrogen-Ion Concentration , Neutrophils/drug effects , Receptors, Cell Surface/metabolism
6.
Front Immunol ; 8: 81, 2017.
Article in English | MEDLINE | ID: mdl-28220120

ABSTRACT

In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6-8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2-4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5-60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...