Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 88: 103167, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901110

ABSTRACT

Microbes that use the single-carbon substrates methanol and methane offer great promise to bioindustry along with substantial environmental benefits. Methanotrophs and other methylotrophs can be engineered and optimized to produce a wide range of products, from biopolymers to biofuels and beyond. While significant limitations remain, including delivery of single-carbon feedstock to bioreactors, efficient growth, and scale-up, these challenges are being addressed and notable improvements have been rapid. Development of expression chassis, use of genome-scale and regulatory models based on omics data, improvements in bioreactor design and operation, and development of green product recovery schemes are enabling the rapid development of single-carbon bioconversion in the industrial space.

2.
EJNMMI Res ; 13(1): 1, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36633702

ABSTRACT

BACKGROUND: The purpose of this study was to assess the feasibility of using a minimally invasive simultaneous estimation method (SIME) to quantify the binding of the 18-kDa translocator protein tracer [18F]FEPPA. Arterial sampling was avoided by extracting an image-derived input function (IDIF) that was metabolite-corrected using venous blood samples. The possibility of reducing scan duration to 90 min from the recommended 2-3 h was investigated by assuming a uniform non-displaceable distribution volume (VND) to simplify the SIME fitting. RESULTS: SIME was applied to retrospective data from healthy volunteers and was comprised of both high-affinity binders (HABs) and mixed-affinity binders (MABs). Estimates of global VND and regional total distribution volume (VT) from SIME were not significantly different from values obtained using a two-tissue compartment model (2CTM). Regional VT estimates were greater for HABs compared to MABs for both the 2TCM and SIME, while the SIME estimates had lower inter-subject variability (41 ± 17% reduction). Binding potential (BPND) values calculated from regional VT and brain-wide VND estimates were also greater for HABs, and reducing the scan time from 120 to 90 min had no significant effect on BPND. The feasibility of using venous metabolite correction was evaluated in a large animal model involving a simultaneous collection of arterial and venous samples. Strong linear correlations were found between venous and arterial measurements of the blood-to-plasma ratio and the remaining [18F]FEPPA fraction. Lastly, estimates of BPND and the specific distribution volume (i.e., VS = VT - VND) from a separate group of healthy volunteers (90 min scan time, venous-scaled IDIFs) agreed with estimates from the retrospective data for both genotypes. CONCLUSIONS: The results of this study demonstrate that accurate estimates of regional VT, BPND and VS can be obtained by applying SIME to [18F]FEPPA data. Furthermore, the application of SIME enabled the scan time to be reduced to 90 min, and the approach worked well with IDIFs that were scaled and metabolite-corrected using venous blood samples.

3.
Epilepsy Res ; 172: 106583, 2021 05.
Article in English | MEDLINE | ID: mdl-33636504

ABSTRACT

OBJECTIVE: Hybrid PET/MRI may improve detection of seizure-onset zone (SOZ) in drug-resistant epilepsy (DRE), however, concerns over PET bias from MRI-based attenuation correction (MRAC) have limited clinical adoption of PET/MRI. This study evaluated the diagnostic equivalency and potential clinical value of PET/MRI against PET/CT in DRE. MATERIALS AND METHODS: MRI, FDG-PET and CT images (n = 18) were acquired using a hybrid PET/MRI and a CT scanner. To assess diagnostic equivalency, PET was reconstructed using MRAC (RESOLUTE) and CT-based attenuation correction (CTAC) to generate PET/MRI and PET/CT images, respectively. PET/MRI and PET/CT images were compared qualitatively through visual assessment and quantitatively through regional standardized uptake value (SUV) and z-score assessment. Diagnostic accuracy and sensitivity of PET/MRI and PET/CT for SOZ detection were calculated through comparison to reference standards (clinical hypothesis and histopathology, respectively). RESULTS: Inter-reader agreement in visual assessment of PET/MRI and PET/CT images was 78 % and 81 %, respectively. PET/MRI and PET/CT were strongly correlated in mean SUV (r = 0.99, p < 0.001) and z-scores (r = 0.92, p < 0.001) across all brain regions. MRAC SUV bias was <5% in most brain regions except the inferior temporal gyrus, temporal pole, and cerebellum. Diagnostic accuracy and sensitivity were similar between PET/MRI and PET/CT (87 % vs. 85 % and 83 % vs. 83 %, respectively). CONCLUSION: We demonstrate here that PET/MRI with optimal MRAC can yield similar diagnostic performance as PET/CT. Nevertheless, further exploration of the potential added value of PET/MRI is necessary before clinical adoption of PET/MRI for epilepsy imaging.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Pharmaceutical Preparations , Drug Resistant Epilepsy/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Multimodal Imaging , Pilot Projects , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...