Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 13: 120, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22452820

ABSTRACT

BACKGROUND: The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. RESULTS: Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. CONCLUSIONS: Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.


Subject(s)
Actinobacteria/genetics , Evolution, Molecular , Mycobacterium tuberculosis/genetics , Mycobacterium/genetics , Actinobacteria/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzymes/genetics , Coenzymes/metabolism , DNA Repair , Databases, Genetic , Fatty Acids/genetics , Fatty Acids/metabolism , Genome, Bacterial , Genomics , Lipid Metabolism/genetics , Metalloproteins/genetics , Metalloproteins/metabolism , Molybdenum Cofactors , Mycobacterium/classification , Mycobacterium tuberculosis/classification , Phylogeny , Pteridines/metabolism , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism
2.
J Virol ; 81(3): 1305-12, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17108047

ABSTRACT

Adenoviruses (Ads) are responsible for respiratory, ocular, and gastrointestinal illnesses in humans. While the majority of serotypes utilize coxsackievirus-adenovirus receptor (CAR) as their primary attachment receptor, subgroup B and subgroup D Ad37 serotypes use CD46. Given the propensity of Ad vectors to activate host immune responses, we sought to investigate their potential for type I interferon induction. We found that CD46 Ads were capable of alpha interferon (IFN-alpha) induction by peripheral blood mononuclear cells and that plasmacytoid dendritic cells (pDCs) were the principal producers of this cytokine. IFN-alpha induction correlated with the permissivity of pDCs to CD46- but not CAR-utilizing Ad serotypes. A role for Toll-like receptor 9 (TLR9) recognition of Ad was supported by the requirement for viral DNA and efficient endosomal acidification and by the ability of a TLR9-inhibitory oligonucleotide to attenuate IFN-alpha induction. Cell lines expressing TLR9 that are permissive to infection by both CAR- and CD46-utilizing serotypes showed a preferential induction of TLR9-mediated events by CD46-utilizing Ads. Specifically, the latter virus types induced higher levels of cytokine expression and NF-kappaB activation in HeLa cells than CAR-dependent Ad types, despite equivalent infection rates. Therefore, infectivity alone is not sufficient for TLR9 activation, but this activation instead is regulated by a specific receptor entry pathway. These data reveal a novel mode of host immune recognition of Ad with implications for Ad pathogenesis and for the use of unconventional Ad vectors for gene delivery and vaccine development.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/immunology , Membrane Cofactor Protein/metabolism , Toll-Like Receptor 9/metabolism , Adenoviridae/genetics , Adenoviridae/physiology , Cells, Cultured , Leukocytes, Mononuclear
3.
J Virol ; 80(24): 12324-31, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17020947

ABSTRACT

Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development.


Subject(s)
Adenoviridae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Gene Transfer Techniques , Genetic Vectors/genetics , Animals , Antibodies, Monoclonal , Cell Line , Coxsackie and Adenovirus Receptor-Like Membrane Protein , DNA Primers , Humans , Ligands , Mice , Polymerase Chain Reaction , Polymers , Receptors, Virus/metabolism
4.
J Virol ; 79(17): 11259-68, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16103178

ABSTRACT

The majority of adenovirus serotypes utilize the coxsackievirus-adenovirus receptor (CAR) for virus-host cell attachment, but subgroup B and subgroup D (adenovirus type 37 [Ad37]) viruses recognize CD46. CD46 is a ubiquitously expressed receptor that serves as a cofactor for the inactivation of the complement components C3b and C4b, and it also serves as a receptor for diverse microbial pathogens. A reported consequence of CD46 engagement is a reduced capability of human immune cells to express interleukin-12 (IL-12), a cytokine involved in both the innate and adaptive immune responses. Studies were thus undertaken to determine whether CD46-utilizing Ads alter the expression of proinflammatory cytokines. Subgroup B (Ad16 and -35) and Ad37, but not Ad2 or -5, significantly reduced IL-12 production by human peripheral blood mononuclear cells stimulated with gamma interferon (IFN-gamma) and lipopolysaccharide. IL-12 mRNA (p35 and p40 subunits) levels as well as other cytokine mRNA levels (IL-1alpha and -beta, IL-1Ra, and IL-6) were decreased upon interaction with CD46-utilizing Ads. Analysis of transcription factor activity required for cytokine expression indicated that CD46-utilizing Ads preferentially inhibited IFN-gamma-induced C/EBPbeta protein expression, consequently reducing its ability to form DNA complexes. Interference with IFN-gamma signaling events by CD46-utilizing Ads, but not CAR-utilizing Ads, reveals a potentially critical difference in the host immune response against distinct Ad vectors, a situation that has implications for gene delivery and vaccine development.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/immunology , Antigens, CD/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cytokines/metabolism , Membrane Glycoproteins/metabolism , Receptors, Virus/metabolism , Transcription Factors/metabolism , Adenoviridae/physiology , Cells, Cultured , Cytokines/genetics , Humans , Interferon-gamma/pharmacology , Interleukin 1 Receptor Antagonist Protein , Interleukin-12/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear , Membrane Cofactor Protein , RNA, Messenger/genetics , Sialoglycoproteins/metabolism , Transcription Factor CHOP , Virus Replication
5.
Infect Immun ; 73(7): 4017-24, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15972489

ABSTRACT

Chlamydia trachomatis infection is the most common cause of bacterial sexually transmitted diseases. Infection of the urogenital tract by C. trachomatis causes chronic inflammation and related clinical complications. Unlike other invasive bacteria that induce a rapid cytokine/chemokine production, chlamydial infection induces delayed inflammatory response and proinflammatory chemokine production that is dependent on bacterial growth. We present data here to show that the lipid metabolism required for chlamydial growth contributes to Chlamydia-induced proinflammatory chemokine production. By gene microarray profiling, validated with biochemical studies, we found that C. trachomatis LGV2 selectively upregulated PTGS2 (COX2) and PTGER4 (EP4) in cervical epithelial HeLa 229 cells. COX2 is an enzyme that catalyzes the rate-limiting step of arachidonic acid conversion to prostaglandins, including prostaglandin E2 (PGE2) and other eicosanoids, whereas EP4 is a subtype of cell surface receptors for PGE2. We show that Chlamydia infection induced COX2 protein expression in both epithelial cells and peripheral blood mononuclear cells and promoted PGE2 release. Exogenous PGE2 was able to induce interleukin-8 release in HeLa 229 epithelial cells. Finally, we demonstrated that interleukin-8 induction by Chlamydia infection or PGE2 treatment was dependent on extracellular signal-regulated kinase/mitogen-activated protein activity. Together, these data demonstrate that the host lipid remodeling process required for chlamydial growth contributes to proinflammatory chemokine production. This study also highlights the importance of maintaining a balanced habitat for parasitic pathogens as obligate intracellular organisms.


Subject(s)
Chlamydia trachomatis/pathogenicity , Interleukin-8/biosynthesis , Lipid Metabolism , Cyclooxygenase 2 , Dinoprostone/physiology , HeLa Cells , Humans , MAP Kinase Signaling System , Membrane Proteins , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinase 3/physiology , Prostaglandin-Endoperoxide Synthases/genetics , p38 Mitogen-Activated Protein Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...