Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475351

ABSTRACT

Reducing the impact of some biological fluids on bioimplants involves the control of surface characteristics by modeling the interface architecture and assembling ecofriendly thin films to retard corrosion. Therefore, a mixture of hydrolyzed keratin peptides (HKER) was investigated as a corrosion inhibitor for 304L stainless steel (SS) in physiological serum (PS), using electrochemical measurements associated with optical microscopy and atomic force microscopy (AFM). The tests, performed for various concentrations of the inhibitor at different temperatures, showed that the inhibition efficiency (IE) decreased with a rise in temperature and proportionally increased with the HKER concentration, reaching its maximum level, around 88%, at 25 °C, with a concentration of 40 g L-1 HKER in physiological serum. The experimental data best fitted the El-Awady adsorption model. The activation parameters (Ea, ∆Ha and ∆Sa) and the adsorption ones (∆Gads0, ∆Hads, ∆Sads) have highlighted a mixed action mechanism of HKER, revealing that physisorption prevails over chemisorption. AFM parameters, such as the average roughness (Ra), root-mean-square roughness (Rq) and maximum peak-to-valley height (Rp-v), confirmed HKER adsorption, indicating that a smoother surface of the 304L stainless steel was obtained when immersed in a PS-containing inhibitor, compared to the surface designed in blank solution, due to the development of a protective layer on the alloy surface.

2.
Micromachines (Basel) ; 14(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374698

ABSTRACT

Over the past few decades, tactile sensors have become an emerging field of research with direct applications in the area of biomedical engineering. New types of tactile sensors, called magneto-tactile sensors, have recently been developed. The aim of our work was to create a low-cost composite whose electrical conductivity depends on mechanical compressions that can be finely tuned using a magnetic field for magneto-tactile sensor fabrication. For this purpose, 100% cotton fabric was impregnated with a magnetic liquid (EFH-1 type) based on light mineral oil and magnetite particles. The new composite was used to manufacture an electrical device. With the experimental installation described in this study, we measured the electrical resistance of an electrical device placed in a magnetic field in the absence or presence of uniform compressions. The effect of uniform compressions and the magnetic field was the induction of mechanical-magneto-elastic deformations and, as a result, variations in electrical conductivity. In a magnetic field with a flux density of 390 mT, in the absence of mechanical compression forces, a magnetic pressure of 5.36 kPa was generated, and the electrical conductivity increased by 400% compared to that of the composite in the absence of a magnetic field. Upon increasing the compression force to 9 N, in the absence of a magnetic field, the electrical conductivity increased by about 300% compared to that of the device in the absence of compression forces and a magnetic field. In the presence of a magnetic flux density of 390 mT, and when the compression force increased from 3 N to 9 N, the electrical conductivity increased by 2800%. These results suggest the new composite is a promising material for magneto-tactile sensors.

3.
Materials (Basel) ; 16(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110059

ABSTRACT

In this paper, we report the preparation of two new composite materials based on cotton fibers and magnetic liquid consisting of magnetite nanoparticles and light mineral oil. Using the composites and two simple textolite plates plated with copper foil assembled with self-adhesive tape, electrical devices are manufactured. By using an original experimental setup, we measured the electrical capacitance and the loss tangent in a medium-frequency electric field superimposed on a magnetic field. We found that in the presence of the magnetic field, the electrical capacity and the electrical resistance of the device change significantly with the increase of the magnetic field, then, the electrical device is suitable to be used as a magnetic sensor. Furthermore, the electrical response functions of the sensor, for fixed values of the magnetic flux density, change linearly with the increase in the value of the mechanical deformation stress, which gives it a tactile function. When applying mechanical stresses of fixed values, by increasing the value of the magnetic flux density, the capacitive and resistive functions of the electrical device change significantly. So, by using the external magnetic field, the sensitivity of the magneto-tactile sensor increases, therefore the electrical response of this device can be amplified in the case of low values of mechanical tension. This makes the new composites promising candidates for the fabrication of magneto-tactile sensors.

4.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903112

ABSTRACT

In the present work, we report that the manufacturing of new environmentally friendly and low-cost materials with electrical conductivity can be roughly and finely tuned by an external magnetic field for technical and biomedical applications. With this aim in mind, we prepared three types of membranes based on cotton fabric impregnated with bee honey, carbonyl iron microparticles (CI), and silver microparticles (SmP). In order to study the influence of the metal particles and the magnetic field on the electrical conductivity of membranes, electrical devices were made. Using the "volt-amperometric" method, it was found that the electrical conductivity of the membranes is influenced by the mass ratio (mCI: mSmP) and by the B values of the magnetic flux density. It was observed that in the absence of an external magnetic field, adding microparticles of carbonyl iron mixed with silver microparticles in mass ratios (mCI: mSmP) of 1:0, 1:0.5, and 1:1 causes the electrical conductivity of the membranes based on cotton fabrics impregnated with honey to increase 2.05, 4.62, and 7.52 times, respectively, compared with that of the membrane based on cotton fabrics impregnated with honey alone. When applying a magnetic field, the electrical conductivity of the membranes with microparticles of carbonyl iron and silver increases with increasing magnetic flux density B. We conclude that the membranes are very good candidates for the fabrication of devices to be used in biomedical applications due to the possibility of remote, magnetically induced release of the bioactive compounds from honey and silver microparticles into the area of interest during medical treatment.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36145019

ABSTRACT

In this paper, we present the procedure for fabricating a new magneto-tactile sensor (MTS) based on a low-cost commercial polyurethane sponge, including the experimental test configuration, the experimental process, and a description of the mechanisms that lead to obtaining the MTS and its characteristics. It is shown that by using a polyurethane sponge, microparticles of carbonyl iron, ethanol, and copper foil with electroconductive adhesive, we can obtain a high-performance and low-cost MTS. With the experimental assembly described in this paper, the variation in time of the electrical capacity of the MTS was measured in the presence of a deforming force field, a magnetic field, and a magnetic field superimposed over a deformation field. It is shown that, by using an external magnetic field, the sensitivity of the MTS can be increased. Using the magnetic dipole model and linear elasticity approximation, the qualitative mechanisms leading to the reported results are described in detail.

6.
Polymers (Basel) ; 14(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35631944

ABSTRACT

In this study, magnetizable polyurethane sponges (MSs) were obtained from commercial absorbent polyurethane sponges (PSs) doped with carbonyl iron microparticles (CIPs). Based on MSs, we manufactured cylindrical capacitors (CCs). The CCs were subjected to both a magnetic field and an alternating electric field, with a frequency of f=1 kHz. Using an RLC bridge, we measured the series electric capacitance, Cs, and the tangent of the loss angle, Ds. From the functions Cs=Cs(δ)CCs and Ds=Ds(δ)CCs, we extracted the components of the complex dielectric permittivity. It was found that the CIPs embedded in the MS matrix aggregated, leading to magneto-dielectric effects such as the enhancement of the complex dielectric permittivity components when applying the magnetic field as a principal effect and the enhancement of the electric capacitance and time constant of the capacitors as a secondary effect. The obtained results represent landmarks in the realization of low-cost magnetic field sensors, deformation and mechanical stress transducers in the robotics industry, etc.

7.
Materials (Basel) ; 14(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34772023

ABSTRACT

In this paper, we study the electrical properties of new hybrid magnetorheological suspensions (hMRSs) and propose a theoretical model to explain the dependence of the electric capacitance on the iron volumetric fraction, ΦFe, of the dopants and on the external magnetic field. The hMRSs, with dimensions of 30 mm×30 mm×2 mm, were manufactured based on impregnating cotton fabric, during heating, with three solutions of iron microparticles in silicone oil. Flat capacitors based on these hMRSs were then produced. The time variation of the electric capacitance of the capacitors was measured in the presence and absence of a magnetic field, B, in a time interval of 300 s, with Δt=1 s steps. It was shown that for specific values of ΦFe and B, the coupling coefficient between the cotton fibers and the magnetic dipoles had values corresponding to very stable electrical capacitance. Using magnetic dipole approximation, the mechanisms underlying the observed phenomena can be described if the hMRSs are considered continuous media.

8.
Molecules ; 25(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973085

ABSTRACT

Poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) named further PVBA was investigated as a protective coating for copper corrosion in 0.9% NaCl solution using electrochemical measurements such as, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization associated with atomic force microscopy (AFM). The PVBA coating on the copper surface (Cu-PVBA) was modeled in methanol containing PVBA. Its inhibitory properties against corrosion was comparatively discussed with those of the copper sample treated in methanol without polymer (Cu-Me) and of untreated sample (standard copper). A protective performance of PVBA coating of 80% was computed from electrochemical measurements, for copper corrosion in NaCl solution. Moreover, AFM images designed a specific surface morphology of coated surface with PVBA, clearly highlighting a polymer film adsorbed on the copper surface, which presents certain deterioration after corrosion, but the metal surface was not significantly affected compared to those of untreated samples or treated in methanol, in the absence of PVBA.


Subject(s)
Copper/chemistry , Polyvinyls/chemistry , Salinity , Adsorption , Corrosion , Dielectric Spectroscopy , Electricity , Imaging, Three-Dimensional , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL
...