Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(3): e56982, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38665758

ABSTRACT

The Golgi apparatus is an organelle responsible for protein processing, sorting, and transport in cells. Recent research has shed light on its possible role in the pathogenesis of various bone diseases. This review seeks to explore its significance in osteoporosis, osteogenesis imperfecta, and other bone conditions such as dysplasias. Numerous lines of evidence demonstrate that perturbations to Golgi apparatus function can disrupt post-translational protein modification, folding and trafficking functions crucial for bone formation, mineralization, and remodeling. Abnormalities related to glycosylation, protein sorting, or vesicular transport in Golgi have been associated with altered osteoblast and osteoclast function, compromised extracellular matrix composition, as well as disrupted signaling pathways involved with homeostasis of bones. Mutations or dysregulation of Golgi-associated proteins, including golgins and coat protein complex I and coat protein complex II coat components, have also been implicated in bone diseases. Such genetic alterations may disrupt Golgi structure, membrane dynamics, and protein transport, leading to bone phenotype abnormalities. Understanding the links between Golgi apparatus dysfunction and bone diseases could provide novel insights into disease pathogenesis and potential therapeutic targets. Future research should focus on unraveling specific molecular mechanisms underlying Golgi dysfunction associated with bone diseases to develop targeted interventions for restoring normal bone homeostasis while decreasing clinical manifestations associated with these issues.

2.
Curr Issues Mol Biol ; 46(2): 1237-1258, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392197

ABSTRACT

In recent years, the nexus between genetics and biomechanics has garnered significant attention, elucidating the role of genomic determinants in shaping the biomechanical attributes of human joints, specifically the knee. This review seeks to provide a comprehensive exploration of the molecular basis underlying knee joint locomotor function. Leveraging advancements in genomic sequencing, we identified specific genetic markers and polymorphisms tied to key biomechanical features of the knee, such as ligament elasticity, meniscal resilience, and cartilage health. Particular attention was devoted to collagen genes like COL1A1 and COL5A1 and their influence on ligamentous strength and injury susceptibility. We further investigated the genetic underpinnings of knee osteoarthritis onset and progression, as well as the potential for personalized rehabilitation strategies tailored to an individual's genetic profile. We reviewed the impact of genetic factors on knee biomechanics and highlighted the importance of personalized orthopedic interventions. The results hold significant implications for injury prevention, treatment optimization, and the future of regenerative medicine, targeting not only knee joint health but joint health in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...